Electronic structure of graphene– and BN–supported phosphorene

[1]  K. Zhou,et al.  Thermal Conductivity and Tensile Response of Phosphorene Nanosheets with Vacancy Defects , 2017 .

[2]  H. Zeng,et al.  Antimonene Oxides: Emerging Tunable Direct Bandgap Semiconductor and Novel Topological Insulator. , 2017, Nano letters.

[3]  K. Zhou,et al.  Strain and water effects on the electronic structure and chemical activity of in-plane graphene/silicene heterostructure , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  K. Zhou,et al.  Large Electronic Anisotropy and Enhanced Chemical Activity of Highly Rippled Phosphorene , 2016, 1610.07688.

[5]  Yong-Wei Zhang,et al.  Decoupled electron and phonon transports in hexagonal boron nitride-silicene bilayer heterostructure , 2016 .

[6]  H. Zeng,et al.  Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities. , 2016, Angewandte Chemie.

[7]  D. Tománek,et al.  Structural Transition in Layered As(1-x)P(x) Compounds: A Computational Study. , 2015, Nano letters.

[8]  Gang Zhang,et al.  Electronic Properties of Phosphorene/Graphene and Phosphorene/Hexagonal Boron Nitride Heterostructures , 2015, 1505.07545.

[9]  Mohammad Asadi,et al.  High‐Quality Black Phosphorus Atomic Layers by Liquid‐Phase Exfoliation , 2015, Advanced materials.

[10]  Jinlan Wang,et al.  Electronic Structure of Twisted Bilayers of Graphene/MoS2 and MoS2/MoS2 , 2015 .

[11]  Yong-Wei Zhang,et al.  Giant Phononic Anisotropy and Unusual Anharmonicity of Phosphorene: Interlayer Coupling and Strain Engineering , 2015, 1502.00375.

[12]  A Gholinia,et al.  Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.

[13]  J. Guan,et al.  Simulated scanning tunneling microscopy images of few-layer phosphorus capped by graphene and hexagonal boron nitride monolayers , 2014, 1412.5944.

[14]  Wei Hu,et al.  Defects in Phosphorene , 2014, 1411.6986.

[15]  Xiaolin Wei,et al.  Band structure engineering of monolayer MoS2 on h-BN: first-principles calculations , 2014 .

[16]  Sohee Park,et al.  Interlayer coupling enhancement in graphene/hexagonal boron nitride heterostructures by intercalated defects or vacancies. , 2014, The Journal of chemical physics.

[17]  Q. Jiang,et al.  Bandgap opening in silicene: Effect of substrates , 2014 .

[18]  Wei Hu,et al.  Structural, electronic, and optical properties of hybrid silicene and graphene nanocomposite. , 2013, The Journal of chemical physics.

[19]  G. Mukhopadhyay,et al.  Strain-tunable band gap in graphene/h-BN hetero-bilayer , 2012, 1204.2030.

[20]  Jinlong Yang,et al.  Why the Band Gap of Graphene Is Tunable on Hexagonal Boron Nitride , 2012 .

[21]  D. Naveh,et al.  Tunable band gaps in bilayer graphene-BN heterostructures. , 2010, Nano letters.

[22]  J. McChesney,et al.  Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate , 2005, cond-mat/0512226.

[23]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[24]  K. L. Babcock,et al.  Stability and noise in Taylor-Couette flow with through-flow , 1992 .