Graph-based modeling and simulation of complex systems

Abstract We present graph-based modeling abstractions to represent cyber-physical dependencies arising in complex systems. Specifically, we propose an algebraic graph abstraction to capture physical connectivity in complex optimization models and a computing graph abstraction to capture communication connectivity in computing architectures. The proposed abstractions are scalable and are used as the backbone of a Julia -based software package that we call Plasmo . jl . We show how the algebraic graph abstraction facilitates the implementation, analysis, and decomposition of optimization problems and we show how the computing graph abstraction facilitates the implementation of optimization and control algorithms and their simulation in virtual environments that involve distributed, centralized, and hierarchical computing architectures.

[1]  Benedikt Bollig,et al.  Communicating Finite-State Machines and Two-Variable Logic , 2017, STACS.

[2]  Michael Baldea,et al.  Dynamics and Nonlinear Control of Integrated Process Systems , 2012 .

[3]  Naomi Ehrich Leonard,et al.  Optimal evasive strategies for multiple interacting agents with motion constraints , 2018, Autom..

[4]  A. Osiadacz,et al.  Simulation of transient gas flows in networks , 1984 .

[5]  G. S. Fishman Principles of Discrete Event Simulation , 1978 .

[6]  Victor M. Zavala,et al.  Structured nonconvex optimization of large-scale energy systems using PIPS-NLP , 2014, 2014 Power Systems Computation Conference.

[7]  Rok Sosic,et al.  SnapVX: A Network-Based Convex Optimization Solver , 2017, J. Mach. Learn. Res..

[8]  Victor M. Zavala,et al.  A graph-based computational framework for simulation and optimisation of coupled infrastructure networks , 2017 .

[9]  Ignacio E. Grossmann,et al.  Perspectives in multilevel decision-making in the process industry , 2017 .

[10]  E. W. Endsley,et al.  Modular finite state machines for logic control , 2004 .

[11]  Victor M. Zavala,et al.  Stochastic optimal control model for natural gas networks , 2014, Comput. Chem. Eng..

[12]  Victor M. Zavala,et al.  Benchmarking ADMM in nonconvex NLPs , 2018, Comput. Chem. Eng..

[13]  Jay Lee,et al.  A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems , 2015 .

[14]  Sean Luke,et al.  MASON: A Multiagent Simulation Environment , 2005, Simul..

[15]  Johannes Bisschop,et al.  AIMMS - Optimization Modeling , 2006 .

[16]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[17]  Stephen J. Wright,et al.  Cooperative distributed model predictive control , 2010, Syst. Control. Lett..

[18]  Prodromos Daoutidis,et al.  Optimal decomposition for distributed optimization in nonlinear model predictive control through community detection , 2018, Comput. Chem. Eng..

[19]  Michael S. Branicky,et al.  Simulation of Hybrid Systems , 1996, Hybrid Systems.

[20]  Peter Piela Ascend: an object-oriented computer environment for modeling and analysis , 1989 .

[21]  Moritz Diehl,et al.  CasADi: a software framework for nonlinear optimization and optimal control , 2018, Mathematical Programming Computation.

[22]  Brian W. Kernighan,et al.  AMPL: a mathematical programming language , 1989 .

[23]  Tony J. Dodd,et al.  Supervisory control theory applied to swarm robotics , 2016, Swarm Intelligence.

[24]  Michael J. North,et al.  Complex adaptive systems modeling with Repast Simphony , 2013, Complex Adapt. Syst. Model..

[25]  Peter Fritzson,et al.  Modelica - a general object-oriented language for continuous and discrete-event system modeling and simulation , 2002, Proceedings 35th Annual Simulation Symposium. SS 2002.

[26]  N. M. Steiger,et al.  2005: Tutorial on Agent-Based Modeling and Simulation , 2005 .

[27]  Iain Dunning,et al.  JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..

[28]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[29]  Victor M. Zavala,et al.  An Optimization-Based State Estimation Framework for Large-Scale Natural Gas Networks , 2018 .

[30]  Victor M. Zavala,et al.  Nonlinear programming strategies on high-performance computers , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[31]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[32]  Nelson Minar,et al.  The Swarm Simulation System: A Toolkit for Building Multi-Agent Simulations , 1996 .

[33]  Victor M. Zavala,et al.  Multi-Grid Schemes for Multi-Scale Coordination of Energy Systems , 2020, 2002.10680.

[34]  Emil M. Constantinescu,et al.  PETSc/TS: A Modern Scalable ODE/DAE Solver Library , 2018, 1806.01437.

[35]  Ignacio E. Grossmann,et al.  Linear coupled component automata for MILP modeling of hybrid systems , 2009, Comput. Chem. Eng..

[36]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[37]  Ignacio E. Grossmann,et al.  Advances in mathematical programming models for enterprise-wide optimization , 2012, Comput. Chem. Eng..

[38]  Michael J. North,et al.  Parallel agent-based simulation with Repast for High Performance Computing , 2013, Simul..

[39]  William L. Scott,et al.  Optimal evasive strategies for groups of interacting agents with motion constraints , 2017 .

[40]  Edward A. Lee Cyber Physical Systems: Design Challenges , 2008, 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC).

[41]  David Broman,et al.  Co-Simulation , 2018, ACM Comput. Surv..

[42]  David L. Woodruff,et al.  Pyomo — Optimization Modeling in Python , 2012, Springer Optimization and Its Applications.

[43]  Daniel Brand,et al.  On Communicating Finite-State Machines , 1983, JACM.