IMPLICATIONS OF PLASMA BEAM INSTABILITIES FOR THE STATISTICS OF THE FERMI HARD GAMMA-RAY BLAZARS AND THE ORIGIN OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND

Fermi has been instrumental in constraining the luminosity function and redshift evolution of gamma-ray bright BL Lac objects, a subpopulation of blazars with almost featureless optical spectra. This includes limits on the spectrum and anisotropy of the extragalactic gamma-ray background (EGRB), redshift distribution of nearby Fermi active galactic nuclei (AGNs), and the construction of a –log S relation. Based on these, it has been argued that the evolution of the gamma-ray bright BL Lac population must be much less dramatic than that of other AGNs. However, critical to such claims is the assumption that inverse Compton cascades reprocess emission above a TeV into the Fermi energy range, substantially enhancing the strength of the observed limits. Here we demonstrate that in the absence of such a process, due, e.g., to the presence of virulent plasma beam instabilities that preempt the cascade, a population of TeV-bright BL Lac objects that evolve similarly to quasars is consistent with the population of hard gamma-ray BL Lac objects observed by Fermi. Specifically, we show that a simple model for the properties and luminosity function is simultaneously able to reproduce their –log S relation, local redshift distribution, and contribution to the EGRB and its anisotropy without any free parameters. Insofar as the naturalness of a picture in which the hard gamma-ray BL Lac population exhibits the strong redshift evolution observed in other tracers of the cosmological history of accretion onto halos is desirable, this lends support for the absence of the inverse Compton cascades and the existence of the beam plasma instabilities.

[1]  C. Kulesa,et al.  THE ARIZONA RADIO OBSERVATORY CO MAPPING SURVEY OF GALACTIC MOLECULAR CLOUDS. III. THE SERPENS CLOUD IN CO J = 2–1 AND 13CO J = 2–1 EMISSION , 2013, 1311.4028.

[2]  P. Schady,et al.  THE COSMIC EVOLUTION OF FERMI BL LACERTAE OBJECTS , 2013, 1310.0006.

[3]  F. Kitaura,et al.  DETECTION OF THE COSMIC γ-RAY HORIZON FROM MULTIWAVELENGTH OBSERVATIONS OF BLAZARS , 2013, 1305.2162.

[4]  P. Giommi,et al.  A simplified view of blazars: the γ-ray case , 2013, 1302.4331.

[5]  T. Totani,et al.  EXTRAGALACTIC BACKGROUND LIGHT FROM HIERARCHICAL GALAXY FORMATION: GAMMA-RAY ATTENUATION UP TO THE EPOCH OF COSMIC REIONIZATION AND THE FIRST STARS , 2012, 1212.1683.

[6]  D. Thompson,et al.  The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars , 2012, Science.

[7]  F. Miniati,et al.  PLASMA EFFECTS ON FAST PAIR BEAMS IN COSMIC VOIDS , 2012, ICOPS 2012.

[8]  F. Miniati,et al.  RELAXATION OF BLAZAR-INDUCED PAIR BEAMS IN COSMIC VOIDS , 2012, 1208.1761.

[9]  J. Singal,et al.  THE RADIO AND OPTICAL LUMINOSITY EVOLUTION OF QUASARS. II. THE SDSS SAMPLE , 2012, 1207.3396.

[10]  K. Ioka,et al.  Upper limit on the cosmological gamma-ray background , 2012, 1206.2923.

[11]  J. Beacom,et al.  Gamma-ray and neutrino backgrounds as probes of the high-energy universe: hints of cascades, general constraints, and implications for TeV searches , 2012, 1205.5755.

[12]  E. Komatsu,et al.  Joint anisotropy and source count constraints on the contribution of blazars to the diffuse gamma-ray background , 2012, 1202.5309.

[13]  R. Romani,et al.  THE LUMINOSITY FUNCTION OF FERMI-DETECTED FLAT-SPECTRUM RADIO QUASARS , 2011, 1110.3787.

[14]  A. Broderick,et al.  THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. III. IMPLICATIONS FOR GALAXY CLUSTERS AND THE FORMATION OF DWARF GALAXIES , 2011, 1106.5505.

[15]  A. Broderick,et al.  THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. II. REWRITING THE THERMAL HISTORY OF THE INTERGALACTIC MEDIUM , 2011, 1106.5504.

[16]  A. Broderick,et al.  THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. I. IMPLICATIONS OF PLASMA INSTABILITIES FOR THE INTERGALACTIC MAGNETIC FIELD AND EXTRAGALACTIC GAMMA-RAY BACKGROUND , 2011, 1106.5494.

[17]  P. Giommi,et al.  A simplified view of blazars: clearing the fog around long‐standing selection effects , 2011, 1110.4706.

[18]  V. Springel,et al.  The Lyman α forest in a blazar-heated Universe , 2011, 1107.3837.

[19]  J. Singal,et al.  FLUX AND PHOTON SPECTRAL INDEX DISTRIBUTIONS OF FERMI-LAT BLAZARS AND CONTRIBUTION TO THE EXTRAGALACTIC GAMMA-RAY BACKGROUND , 2011, 1106.3111.

[20]  A new model for the extragalactic gamma-ray background , 2011, 1105.4613.

[21]  Y. Inoue CONTRIBUTION OF GAMMA-RAY-LOUD RADIO GALAXIES’ CORE EMISSIONS TO THE COSMIC MeV AND GeV GAMMA-RAY BACKGROUND RADIATION , 2011, 1103.3946.

[22]  J. Singal,et al.  ON THE RADIO AND OPTICAL LUMINOSITY EVOLUTION OF QUASARS , 2011, 1101.2930.

[23]  T. Venters,et al.  COMPONENTS OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND , 2010, 1012.3678.

[24]  J. P. Harding,et al.  Contribution of blazars to the extragalactic diffuse gamma-ray background and their future spatial resolution , 2010, 1012.1247.

[25]  E. Komatsu,et al.  Anisotropies in the diffuse gamma-ray background measured by the Fermi-LAT , 2010, 1202.2856.

[26]  Jean-Luc Starck,et al.  THE FERMI-LAT HIGH-LATITUDE SURVEY: SOURCE COUNT DISTRIBUTIONS AND THE ORIGIN OF THE EXTRAGALACTIC DIFFUSE BACKGROUND , 2010, 1003.0895.

[27]  M. C. Cooper,et al.  Extragalactic background light inferred from AEGIS galaxy-SED-type fractions , 2010, 1103.4534.

[28]  T Glanzman,et al.  Spectrum of the isotropic diffuse gamma-ray emission derived from first-year Fermi Large Area Telescope data. , 2010, Physical review letters.

[29]  Robert P. Johnson,et al.  THE FIRST CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE , 2010, 1002.0150.

[30]  A. Kusenko,et al.  A new interpretation of the gamma-ray observations of distant active galactic nuclei , 2009, 0905.1162.

[31]  A. Loeb,et al.  The pulsar contribution to the gamma-ray background , 2009, 0904.3102.

[32]  T. Venters CONTRIBUTION TO THE EXTRAGALACTIC GAMMA-RAY BACKGROUND FROM THE CASCADES OF VERY HIGH ENERGY GAMMA RAYS FROM BLAZARS , 2009, 0912.3794.

[33]  A. Neronov,et al.  Sensitivity of {gamma}-ray telescopes for detection of magnetic fields in the intergalactic medium , 2009, 0910.1920.

[34]  P. Giommi,et al.  The Deep X-Ray Radio Blazar Survey. III. Radio Number Counts, Evolutionary Properties, and Luminosity Function of Blazars , 2007, astro-ph/0702740.

[35]  G. Richards,et al.  An Observational Determination of the Bolometric Quasar Luminosity Function , 2006, astro-ph/0605678.

[36]  P. Uttley,et al.  Active galactic nuclei as scaled-up Galactic black holes , 2006, Nature.

[37]  T. Totani,et al.  Gamma-Ray Luminosity Function of Blazars and the Cosmic Gamma-Ray Background: Evidence for the Luminosity-Dependent Density Evolution , 2006, astro-ph/0602178.

[38]  I. Hook,et al.  The Parkes quarter-Jansky flat-spectrum sample - III. Space density and evolution of QSOs , 2004, astro-ph/0408122.

[39]  K. Mannheim,et al.  BL Lac Contribution to the Extragalactic Gamma-Ray Background , 2004, 0705.3778.

[40]  K. Mannheim,et al.  Implications of cosmological gamma-ray absorption - II. Modification of gamma-ray spectra , 2003, astro-ph/0309141.

[41]  T. Maccarone,et al.  The connection between radio-quiet active galactic nuclei and the high/soft state of X-ray binaries , 2003, astro-ph/0309137.

[42]  K. Blundell,et al.  The radio luminosity function from the low-frequency 3CRR, 6CE and 7CRS complete samples , 2000, astro-ph/0010419.

[43]  F. Stecker,et al.  Absorption of High-Energy Gamma Rays by Interactions with Extragalactic Starlight Photons at High Redshifts and the High-Energy Gamma-Ray Background , 1997, astro-ph/9708182.

[44]  A. Eddington,et al.  The correction of statistics for accidental error , 1940 .

[45]  A. Eddington,et al.  On a Formula for Correcting Statistics for the Effects of a known Probable Error of Observation , 1913 .