Improving the productivity of S-adenosyl-l-methionine by metabolic engineering in an industrial Saccharomyces cerevisiae strain.

[1]  Zhinan Xu,et al.  The Improvement of SAM Accumulation by Integrating the Endogenous Methionine Adenosyltransferase Gene SAM2 in Genome of the Industrial Saccharomyces cerevisiae Strain , 2016, Applied Biochemistry and Biotechnology.

[2]  Muneyoshi Kanai,et al.  Adenosine kinase-deficient mutant of Saccharomyces cerevisiae accumulates S-adenosylmethionine because of an enhanced methionine biosynthesis pathway , 2013, Applied Microbiology and Biotechnology.

[3]  Jens Nielsen,et al.  Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode. , 2012, Metabolic engineering.

[4]  A. Kondo,et al.  Enzymatic glutathione production using metabolically engineered Saccharomyces cerevisiae as a whole-cell biocatalyst , 2011, Applied Microbiology and Biotechnology.

[5]  T. Tan,et al.  [Pre-L-methionine feeding strategy for S-adenosyl-L-methionine fermentative production]. , 2008, Sheng wu gong cheng xue bao = Chinese journal of biotechnology.

[6]  Jun Gu,et al.  A synergistic effect on the production of S-adenosyl-L-methionine in Pichia pastoris by knocking in of S-adenosyl-L-methionine synthase and knocking out of cystathionine-beta synthase. , 2006, Journal of biotechnology.

[7]  C. W. Tabor,et al.  Polyamine deficiency leads to accumulation of reactive oxygen species in a spe2Δ mutant of Saccharomyces cerevisiae , 2006, Yeast.

[8]  K. Iwashita,et al.  A new method for isolation of S-adenosylmethionine (SAM)-accumulating yeast , 2006, Applied Microbiology and Biotechnology.

[9]  Zhinan Xu,et al.  An effective strategy for the co-production of S-adenosyl-l-methionine and glutathione by fed-batch fermentation , 2004 .

[10]  D. Appling,et al.  Regulation of S-Adenosylmethionine Levels in Saccharomyces cerevisiae* , 2003, Journal of Biological Chemistry.

[11]  C. W. Tabor,et al.  SPE1 and SPE2: two essential genes in the biosynthesis of polyamines that modulate +1 ribosomal frameshifting in Saccharomyces cerevisiae , 1994, Journal of bacteriology.

[12]  D. Laporte,et al.  GLC3 and GHA1 of Saccharomyces cerevisiae are allelic and encode the glycogen branching enzyme , 1992, Molecular and cellular biology.

[13]  Y. Surdin-Kerjan,et al.  The synthesis of the two S-adenosyl-methionine synthetases is differently regulated in Saccharomyces cerevisiae , 1991, Molecular and General Genetics MGG.

[14]  H. Barceló,et al.  [Experimental osteoarthritis and its course when treated with S-adenosyl-L-methionine]. , 1990, Revista clinica espanola.

[15]  S. H. Lillie,et al.  Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation , 1980, Journal of bacteriology.

[16]  Y. Zhuang,et al.  Progress in the research of S-adenosyl-l-methionine production , 2012, Applied Microbiology and Biotechnology.

[17]  L. Hui Production of S-adenosyl-L-methionine Using Saccharomyces Cerevisiae by Bioconversion of L-methionine , 2002 .