A self-consistent two-dimensional model of quantum-well semiconductor lasers: optimization of a GRIN-SCH SQW laser structure

A two-dimensional model for quantum-well lasers that solves, self-consistently, the semiconductor equations together with the complex scalar wave equation is described. It incorporates a position- and wavelength-dependent gain function which is derived from a quantum mechanical calculation. Such a model enables one to predict the characteristics of a quantum-well laser with a minimal number of empirical parameters. The output of the model includes light-current characteristics, the current distribution, and the optical field intensity distribution, obtained simultaneously in the calculation. Examples for modeling GRIN-SCH SQW (graded-index separate confinement heterostructure single quantum well) ridge wave guide lasers are given, and good agreement with experimental results is obtained. The model is used to optimize the geometry of a GRIN-SCH SQW laser for minimum threshold current and maximum efficiency. >

[1]  Osamu Wada,et al.  Very low threshold current ridge-waveguide AlGaAs/GaAs single-quantum-well lasers , 1985 .

[2]  D. Dunlavy,et al.  Minority‐carrier lifetime in AlxGa1−xAs , 1989 .

[3]  C. Harder,et al.  Spontaneous emission and gain in GaAlAs quantum well lasers , 1991 .

[4]  K. Petermann Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding , 1979 .

[5]  J. Buus Models of the static and dynamic behavior of stripe geometry lasers , 1983 .

[6]  F. Wooten,et al.  Optical Properties of Solids , 1972 .

[7]  F. Brillouet,et al.  Design of quantum well AlGaAs-GaAs stripe lasers for minimization of threshold current-application to ridge structures , 1988 .

[8]  Tsuyoshi Uda,et al.  A two-dimensional device simulator of semiconductor lasers , 1987 .

[9]  R. Maciejko,et al.  Photoelastic effects on the emission patterns of InGaAsP ridge-waveguide lasers , 1989 .

[10]  N. Sugiyama,et al.  Effects of well number, cavity length, and facet reflectivity on the reduction of threshold current of GaAs/AlGaAs multiquantum well lasers , 1988 .

[11]  Peter S. Zory,et al.  A model for GRIN-SCH-SQW diode lasers , 1988 .

[12]  Won-Tien Tsang,et al.  Extremely low threshold (AlGa)As graded‐index waveguide separate‐confinement heterostructure lasers grown by molecular beam epitaxy , 1982 .

[13]  Use of Fermi statistics in two-dimensional numerical simulation of heterojunction devices , 1990 .

[14]  G. Haddad,et al.  Finite-element simulation of GaAs MESFET's with lateral doping profiles and submicron gates , 1976, IEEE Transactions on Electron Devices.

[15]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[16]  J. S. Blakemore Electron capture and emission for midgap centers , 1988 .

[17]  S. Kumashiro,et al.  Two-dimensional numerical analysis of lasing characteristics for self-aligned structure semiconductor lasers , 1990 .

[18]  P. J. Stevens,et al.  Predicted performance of quantum-well GaAs-(GaAl)As optical amplifiers , 1990 .

[19]  Quantum mechanics , 1964 .

[20]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[21]  L. Coldren,et al.  Corrections to the expression for gain in GaAs , 1990 .

[22]  Karl Hess,et al.  Two-dimensional simulation of quantum well lasers , 1990, Eur. Trans. Telecommun..

[23]  S. McAlister,et al.  TWO‐DIMENSIONAL MODELING OF QUANTUM‐WELL SEMICONDUCTOR LASERS , 1991 .

[24]  M. Yamada,et al.  Anistropy and broadening of optical gain in a GaAs/AlGaAs multiquantum-well laser , 1985, IEEE Journal of Quantum Electronics.

[25]  J.R. Hauser,et al.  A computer analysis of heterojunction and graded composition solar cells , 1977, IEEE Transactions on Electron Devices.

[26]  P. Zory,et al.  Cavity length dependence of the threshold behavior in thin quantum well semiconductor lasers , 1987 .

[27]  P. Dapkus,et al.  Optimization of stripe width for low-threshold operation of quantum well laser diodes , 1990 .

[28]  Michael A. Littlejohn,et al.  Velocity‐field characteristics of GaAs with Γc6‐Lc6‐Xc6 conduction‐band ordering , 1977 .