System identification in communication with chaotic systems

Communication using chaotic systems is considered from a control point of view It is shown that parameter identification methods may be effective in building reconstruction mechanisms, even when a synchronizing system is not available. Three worked examples show the potentials of the proposed method.

[1]  John G. Proakis,et al.  Digital Communications , 1983 .

[2]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[3]  Sastry,et al.  Necessary and sufficient conditions for parameter convergence in adaptive control , 1984 .

[4]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[5]  A. Isidori Nonlinear Control Systems , 1985 .

[6]  R. Marino On the largest feedback linearizable subsystem , 1986 .

[7]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[8]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[9]  Anthony M. Bloch,et al.  Nonlinear Dynamical Control Systems (H. Nijmeijer and A. J. van der Schaft) , 1991, SIAM Review.

[10]  Leon O. Chua,et al.  EXPERIMENTAL CHAOS SYNCHRONIZATION IN CHUA'S CIRCUIT , 1992 .

[11]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[12]  Ott,et al.  Enhancing synchronism of chaotic systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Kevin M. Short,et al.  Steps Toward Unmasking Secure Communications , 1994 .

[14]  Pérez,et al.  Extracting messages masked by chaos. , 1995, Physical review letters.

[15]  Morgül,et al.  Observer based synchronization of chaotic systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Peng,et al.  Synchronizing hyperchaos with a scalar transmitted signal. , 1996, Physical review letters.

[17]  M. Hasler,et al.  Communication by chaotic signals : the inverse system approach , 1996 .

[18]  Kevin M. Short,et al.  UNMASKING A MODULATED CHAOTIC COMMUNICATIONS SCHEME , 1996 .

[19]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[20]  Ned J. Corron,et al.  A new approach to communications using chaotic signals , 1997 .

[21]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[22]  Jan C. Willems,et al.  Introduction to mathematical systems theory: a behavioral approach, Texts in Applied Mathematics 26 , 1999 .

[23]  Hjc Henri Huijberts,et al.  Characterization of static feedback realizable transfer functions for nonlinear control systems , 1998 .

[24]  Henk Nijmeijer Control of chaos and synchronization , 1997 .

[25]  Michael Peter Kennedy,et al.  The role of synchronization in digital communications using chaos. I . Fundamentals of digital communications , 1997 .

[26]  J. S. Thorp,et al.  PDMA-1: chaotic communication via the extended Kalman filter , 1998 .

[27]  H. Nijmeijer,et al.  A control perspective on communication using chaotic systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[28]  Henk Nijmeijer,et al.  Synchronization through extended Kalman filtering , 1999 .

[29]  L.C.G.J.M. Habets,et al.  Book review: Introduction to mathematical systems theory, a behavioral approach , 2000 .