Toward an Energy-Efficient High-Voltage Compliant Visual Intracortical Multichannel Stimulator

We present, in this paper, a new multichip system aimed toward building an implantable visual intracortical stimulation device. The objective is to deliver energy-optimum pulse patterns to neural sites with needed compliance voltage across high electrode–tissue interface impedance of implantable microelectrodes. The first chip is an energy-efficient stimuli generator (SG), and the second one is a high-impedance microelectrode array driver (MED) output stage. The four-channel SG produces rectangular, half-sine, plateau-sine, and other types of current pulse with stimulation current ranging from 2.32 to 220 <inline-formula> <tex-math notation="LaTeX">$\mu \text{A}$ </tex-math></inline-formula> per channel. The microelectrode array driver is able to deliver 20 V per anodic or cathodic phase across the microelectrode–tissue interface for ±13 V power supplies. The MED supplies different current levels with the maximum value of 400 <inline-formula> <tex-math notation="LaTeX">$\mu \text{A}$ </tex-math></inline-formula> per input and 100 <inline-formula> <tex-math notation="LaTeX">$\mu \text{A}$ </tex-math></inline-formula> per output channel simultaneously to 8–16 stimulation sites through microelectrodes, connected either in bipolar or monopolar configuration. Both chips receive power via inductive link and data through capacitive coupling. The SG and MED chips have been fabricated in 0.13-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> CMOS and 0.8-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> 5-/20-V CMOS/double-diffused metal-oxide-semiconductor technologies. The measured dc power budgets consumed by low- and mid-voltage chips are 2.56 and 2.1 mW consecutively. The system, modular in architecture, is interfaced with a newly developed platinum-coated pyramidal microelectrode array. <italic>In vitro</italic> test results with 0.9% phosphate buffer saline show the microelectrode impedance of 70 <inline-formula> <tex-math notation="LaTeX">$\text{k}\Omega $ </tex-math></inline-formula> at 1 kHz.

[1]  M. Morrell,et al.  Intracranial stimulation therapy for epilepsy , 2009, Neurotherapeutics.

[2]  M. Elhilali,et al.  Implantable selective stimulator to improve bladder voiding: design and chronic experiments in dogs. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[3]  Mohamad Sawan,et al.  Spatial carrier position modulation based multichannel capacitive link for bioelectronic implants , 2015, 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[4]  Wentai Liu,et al.  An arbitrary waveform stimulus circuit for visual prostheses using a low-area multibias DAC , 2003, IEEE J. Solid State Circuits.

[5]  Mohamad Sawan,et al.  High‐voltage compliant microelectrode array drivers for intracortical microstimulation , 2016, Int. J. Circuit Theory Appl..

[6]  J. Anthony Movshon,et al.  Comparison of Recordings from Microelectrode Arrays and Single Electrodes in the Visual Cortex , 2007, The Journal of Neuroscience.

[7]  Frank Rattay,et al.  Correction: Energy-Optimal Electrical-Stimulation Pulses Shaped by the Least-Action Principle , 2014, PLoS ONE.

[8]  Mohamad Sawan,et al.  A novel energy-efficient stimuli generator for very-high impedance intracortical microstimulation , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[9]  David J. Warren,et al.  An automated system for measuring tip impedance and among-electrode shunting in high-electrode count microelectrode arrays , 2009, Journal of Neuroscience Methods.

[10]  Mohamad Sawan,et al.  A Highly Flexible System for Microstimulation of the Visual Cortex: Design and Implementation , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[11]  Warren M Grill,et al.  Energy-efficient waveform shapes for neural stimulation revealed with a genetic algorithm , 2010, Journal of neural engineering.

[12]  Shuenn-Yuh Lee,et al.  Wireless Front-End With Power Management for an Implantable Cardiac Microstimulator , 2012, IEEE Transactions on Biomedical Circuits and Systems.

[13]  Mohamad Sawan,et al.  Capacitive-data links, energy-efficient and high-voltage compliant visual intracortical microstimulation system , 2013, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013).

[14]  Mohamad Sawan,et al.  High-density 3D pyramid-shaped microelectrode arrays for brain-machine interface applications , 2014, 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings.

[15]  M Sawan,et al.  Electrode–tissues interface: modeling and experimental validation , 2007, Biomedical materials.

[16]  Rahul Sarpeshkar,et al.  A Low-Power Blocking-Capacitor-Free Charge-Balanced Electrode-Stimulator Chip With Less Than 6 nA DC Error for 1-mA Full-Scale Stimulation , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[17]  Richard A. Normann,et al.  Simulation of a phosphene-based visual field: Visual acuity in a pixelized vision system , 2006, Annals of Biomedical Engineering.

[18]  A. B. BASSET,et al.  The Principle of Least Action , 1903, Nature.

[19]  M. Ghovanloo,et al.  A Wireless Implantable Multichannel Microstimulating System-on-a-Chip With Modular Architecture , 2007, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[20]  Mohamad Sawan,et al.  Direct Growth of Carbon Nanotubes on New High-Density 3D Pyramid-Shaped Microelectrode Arrays for Brain-Machine Interfaces , 2016, Micromachines.

[21]  D. J. Warren,et al.  A neural interface for a cortical vision prosthesis , 1999, Vision Research.

[22]  Blake S. Wilson,et al.  Cochlear implants: A remarkable past and a brilliant future , 2008, Hearing Research.

[23]  Kwang Sub Yoon,et al.  A 3.3 V-70 MHz low power 8 bit CMOS digital to analog converter with two-stage current cell matrix structure , 1996, Proceedings of the 39th Midwest Symposium on Circuits and Systems.

[24]  Mohamad Sawan,et al.  Low-power high-speed capacitive transdermal Spatial Pulse Position Modulation communication , 2011, 2011 IEEE 9th International New Circuits and systems conference.

[25]  Gert Cauwenberghs,et al.  A CMOS Current Steering Neurostimulation Array With Integrated DAC Calibration and Charge Balancing , 2017, IEEE Transactions on Biomedical Circuits and Systems.

[26]  Andreas Demosthenous,et al.  An Integrated Implantable Stimulator That is Fail-Safe Without Off-Chip Blocking-Capacitors , 2008, IEEE Transactions on Biomedical Circuits and Systems.

[27]  M. Sawan,et al.  High-voltage DC/DC converter for high-efficiency power recovery in implantable devices , 2009, 2009 International Conference on Microelectronics - ICM.

[28]  O. Ishizuka,et al.  MOS sine function generator using exponential-law technique , 1991 .

[29]  Aref Trigui,et al.  ASSERVISSEMENT DE L'ÉNERGIE INDUCTIVE TRANSMISE AUX IMPLANTS ÉLECTRONIQUES , 2014 .

[30]  Amir M. Sodagar,et al.  Biphasic, energy-efficient, current-controlled stimulation back-end for retinal visual prosthesis , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[31]  Ming-Dou Ker,et al.  A High-Voltage-Tolerant and Precise Charge-Balanced Neuro-Stimulator in Low Voltage CMOS Process , 2016, IEEE Transactions on Biomedical Circuits and Systems.

[32]  C. Kufta,et al.  Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex , 1996 .

[33]  J. Weiland,et al.  Retinal Prosthesis , 2014, IEEE Transactions on Biomedical Engineering.

[34]  Fayçal Mounaim Neurostimulateur hautement intégré et nouvelle stratégie de stimulation pour améliorer la miction chez les paraplégiques , 2013 .

[35]  G. Brindley,et al.  The sensations produced by electrical stimulation of the visual cortex , 1968, The Journal of physiology.

[36]  Mohamad Sawan,et al.  Exponential Current Pulse Generation for Efficient Very High-Impedance Multisite Stimulation , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[37]  Maurits Ortmanns,et al.  A Neural Stimulator Frontend With High-Voltage Compliance and Programmable Pulse Shape for Epiretinal Implants , 2012, IEEE Journal of Solid-State Circuits.

[38]  Ying Yao,et al.  A Microassembled Low-Profile Three-Dimensional Microelectrode Array for Neural Prosthesis Applications , 2007, Journal of Microelectromechanical Systems.

[39]  Mohamad Sawan,et al.  High-Density Implantable Microelectrode Arrays for Brain-Machine Interface Applications , 2014 .

[40]  Mohamad Sawan,et al.  Energy-efficient high-voltage compliant implantable brain-machine interfaces , 2013, 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[41]  Daniel R. Merrill,et al.  Electrical stimulation of excitable tissue: design of efficacious and safe protocols , 2005, Journal of Neuroscience Methods.

[42]  E. Zrenner,et al.  Can subretinal microphotodiodes successfully replace degenerated photoreceptors? , 1999, Vision Research.

[43]  Alexandre Schmid,et al.  Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing , 2017, IEEE Transactions on Biomedical Circuits and Systems.