Trend detection based on a fuzzy temporal profile model

Abstract A fuzzy temporal profile (FTP) is a model through which we describe the evolution of a certain physical parameter V over time. Thus we define a set of significant points ( X 0 , X 1 ,…, X N ), and we approximate the evolution curve by way of linear sections between them. Each section is defined by way of an imprecise constraint on duration, on increase in value and on slope between the points connected by the section. In this article we show a possible method of matching an FTP with a signal, which will enable the detection of profiles of interest on the trace of a physical parameter over time.

[1]  Senén Barro,et al.  A model and a language for the fuzzy representation and handling of time , 1994 .

[2]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[3]  Benjamin Kuipers,et al.  Qualitative Simulation , 1986, Artificial Intelligence.

[4]  Caroline M. Eastman,et al.  Response: Introduction to fuzzy arithmetic: Theory and applications : Arnold Kaufmann and Madan M. Gupta, Van Nostrand Reinhold, New York, 1985 , 1987, Int. J. Approx. Reason..

[5]  G. Stephanopoulos,et al.  Representation of process trends—Part I. A formal representation framework , 1990 .

[6]  Ugo Montanari,et al.  Networks of constraints: Fundamental properties and applications to picture processing , 1974, Inf. Sci..

[7]  Senén Barro,et al.  Representación lingüística de perfiles temporales borrosos , 1998 .

[8]  Friedrich Steimann The interpretation of time-varying data with DIAMON-1 , 1996, Artif. Intell. Medicine.

[9]  Didier Dubois,et al.  Readings in Fuzzy Sets for Intelligent Systems , 1993 .

[10]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[11]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[12]  R. Yager On the specificity of a possibility distribution , 1992 .

[13]  Senén Barro,et al.  A Fuzzy Linear Approach to Recognising Signal Profiles , 1998, IEA/AIE.

[14]  D. Qian Representation and use of imprecise temporal knowledge in dynamic systems , 1992 .

[15]  Madan M. Gupta,et al.  Introduction to Fuzzy Arithmetic , 1991 .

[16]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[17]  Roque Marín,et al.  Modeling the representation of time from a fuzzy perspective , 1994 .

[18]  Helene Fargier Problèmes de satisfaction de contraintes flexibles. Application à l'ordonnancement de production , 1994 .

[19]  Benjamin J. Kaipers,et al.  Qualitative Simulation , 1989, Artif. Intell..

[20]  Ira J. Haimowitz,et al.  Clinical monitoring using regression-based trend templates , 1995, Artif. Intell. Medicine.