Efficient Factorization of the Joint-Space Inertia Matrix for Branched Kinematic Trees
暂无分享,去创建一个
[1] M. A. Chace,et al. A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems—Part 1 , 1977 .
[2] N. Orlandea,et al. A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems—Part 2 , 1977 .
[3] Alan George,et al. Computer Solution of Large Sparse Positive Definite , 1981 .
[4] David E. Orin,et al. Efficient Dynamic Computer Simulation of Robotic Mechanisms , 1982 .
[5] J. Pasciak,et al. Computer solution of large sparse positive definite systems , 1982 .
[6] R. Featherstone. The Calculation of Robot Dynamics Using Articulated-Body Inertias , 1983 .
[7] Martin Otter,et al. A very efficient algorithm for the simulation of robots and similar multibody systems without invers , 1986 .
[8] Giuseppe Rodriguez,et al. Kalman filtering, smoothing, and recursive robot arm forward and inverse dynamics , 1987, IEEE Journal on Robotics and Automation.
[9] Roy Featherstone,et al. Robot Dynamics Algorithms , 1987 .
[10] Edward J. Haug,et al. A Recursive Formation for Constrained Mechanical Systems Dynamics: Part I, Open Loop Systems , 1987 .
[11] I. Duff,et al. Direct Methods for Sparse Matrices , 1987 .
[12] E. Haug,et al. A Recursive Formulation for Constrained Mechanical System Dynamics: Part II. Closed Loop Systems , 1987 .
[13] Rajnikant V. Patel,et al. Efficient modeling and computation of manipulator dynamics using orthogonal Cartesian tensors , 1988, IEEE J. Robotics Autom..
[14] K. Kreutz,et al. A Spatial Operator Algebra For Manipulator Modeling And Control , 1988, Other Conferences.
[15] Jorge Angeles,et al. Dynamic Simulation of n-Axis Serial Robotic Manipulators Using a Natural Orthogonal Complement , 1988, Int. J. Robotics Res..
[16] Rajnikant V. Patel,et al. Efficient computation of manipulator inertia matrices and the direct dynamics problem , 1989, IEEE Trans. Syst. Man Cybern..
[17] D. E. Rosenthal. An Order n Formulation for Robotic Ststems , 1990 .
[18] David E. Orin,et al. Alternate Formulations for the Manipulator Inertia Matrix , 1991, Int. J. Robotics Res..
[19] Scott McMillan,et al. Efficient computation of articulated-body inertias using successive axial screws , 1995, IEEE Trans. Robotics Autom..
[20] Scott McMillan,et al. Efficient dynamic simulation of an underwater vehicle with a robotic manipulator , 1995, IEEE Trans. Syst. Man Cybern..
[21] Michael Valášek,et al. Kinematics and Dynamics of Machinery , 1996 .
[22] David Baraff,et al. Linear-time dynamics using Lagrange multipliers , 1996, SIGGRAPH.
[23] Subir Kumar Saha,et al. A decomposition of the manipulator inertia matrix , 1997, IEEE Trans. Robotics Autom..
[24] S. Saha. Dynamics of Serial Multibody Systems Using the Decoupled Natural Orthogonal Complement Matrices , 1999 .
[25] David E. Orin,et al. Robot dynamics: equations and algorithms , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).
[26] Wisama Khalil,et al. Modeling, Identification and Control of Robots , 2003 .