Activation in Early Retinotopic Cortex Recognition Alters the Spatial Pattern of fMRI

[1]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[2]  D. Kersten,et al.  Attention-Dependent Representation of a Size Illusion in Human V1 , 2008, Current Biology.

[3]  D. Knill,et al.  The Bayesian brain: the role of uncertainty in neural coding and computation , 2004, Trends in Neurosciences.

[4]  Edgar A. DeYoe,et al.  I know where you are secretly attending! The topography of human visual attention revealed with fMRI , 2009, Vision Research.

[5]  D. Heeger,et al.  Activity in primary visual cortex predicts performance in a visual detection task , 2000, Nature Neuroscience.

[6]  Geoffrey M Boynton,et al.  The Representation of Behavioral Choice for Motion in Human Visual Cortex , 2007, The Journal of Neuroscience.

[7]  David Whitney,et al.  Attention Narrows Position Tuning of Population Responses in V1 , 2009, Current Biology.

[8]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[9]  Z Kourtzi,et al.  Representation of Perceived Object Shape by the Human Lateral Occipital Complex , 2001, Science.

[10]  D. Kersten,et al.  Responses to Lightness Variations in Early Human Visual Cortex , 2007, Current Biology.

[11]  W. Richards,et al.  Perception as Bayesian Inference , 2008 .

[12]  G. Boynton,et al.  Feature-Based Attentional Modulations in the Absence of Direct Visual Stimulation , 2007, Neuron.

[13]  Rajesh P. N. Rao,et al.  Bayesian inference and attentional modulation in the visual cortex , 2005, Neuroreport.

[14]  Fang Fang,et al.  Perceptual grouping and inverse fMRI activity patterns in human visual cortex. , 2008, Journal of vision.

[15]  Ravi S. Menon,et al.  Haptic study of three-dimensional objects activates extrastriate visual areas , 2002, Neuropsychologia.

[16]  Paul Schrater,et al.  Shape perception reduces activity in human primary visual cortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Paradiso,et al.  V1 response timing and surface filling-in. , 2008, Journal of neurophysiology.

[19]  D. Kersten,et al.  The representation of perceived angular size in human primary visual cortex , 2006, Nature Neuroscience.

[20]  Jacob Jolij,et al.  Figure–ground segregation requires two distinct periods of activity in V1: a transcranial magnetic stimulation study , 2005, Neuroreport.

[21]  T. S. Lee,et al.  A Bayesian framework for understanding texture segmentation in the primary visual cortex , 1995, Vision Research.

[22]  M. Bear,et al.  Reward Timing in the Primary Visual Cortex , 2006, Science.

[23]  N. Kanwisher,et al.  Feedback of pVisual Object Information to Foveal Retinotopic Cortex , 2008, Nature Neuroscience.

[24]  R. Dolan,et al.  Contrast polarity and face recognition in the human fusiform gyrus , 1999, Nature Neuroscience.

[25]  N. Rubin,et al.  fMRI Activation in Response to Illusory Contours and Salient Regions in the Human Lateral Occipital Complex , 2003, Neuron.

[26]  Pieter R. Roelfsema,et al.  Object-based attention in the primary visual cortex of the macaque monkey , 1998, Nature.

[27]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[28]  F. Tong,et al.  The timing of perceptual decisions for ambiguous face stimuli in the human ventral visual cortex. , 2006, Cerebral cortex.

[29]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[30]  Karl J. Friston,et al.  How the brain learns to see objects and faces in an impoverished context , 1997, Nature.

[31]  John T Serences,et al.  Value-Based Modulations in Human Visual Cortex , 2008, Neuron.

[32]  E. Halgren,et al.  Top-down facilitation of visual recognition. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Xiaoping Hu,et al.  Effective connectivity during haptic perception: A study using Granger causality analysis of functional magnetic resonance imaging data , 2008, NeuroImage.

[34]  J. M. Hupé,et al.  Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons , 1998, Nature.

[35]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[36]  Guillaume Flandin,et al.  Retinotopic organization of visual mental images as revealed by functional magnetic resonance imaging. , 2004, Brain research. Cognitive brain research.

[37]  David E. J. Linden,et al.  Orientation-specific adaptation to mentally generated lines in human visual cortex , 2009, NeuroImage.

[38]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[39]  D. Mumford On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[40]  S Ullman,et al.  Sequence seeking and counter streams: a computational model for bidirectional information flow in the visual cortex. , 1995, Cerebral cortex.

[41]  A. Yuille,et al.  Object perception as Bayesian inference. , 2004, Annual review of psychology.