A review of heat treatment on polyacrylonitrile fiber

Abstract Developing carbon fiber from polyacrylonitrile (PAN) based fiber is generally subjected to three processes namely stabilization, carbonization, and graphitization under controlled conditions. The PAN fiber is first stretched and simultaneously oxidized in a temperature range of 200–300 °C. This treatment converts thermoplastic PAN to a non-plastic cyclic or a ladder compound. After oxidation, the fibers are carbonized at about 1000 °C in inert atmosphere which is usually nitrogen. Then, in order to improve the ordering and orientation of the crystallites in the direction of the fiber axis, the fiber must be heated at about 1500–3000 °C until the polymer contains 92–100%. High temperature process generally leads to higher modulus fibers which expel impurities in the chain as volatile by-products. During heating treatment, the fiber shrinks in diameter, builds the structure into a large structure and upgrades the strength by removing the initial nitrogen content of PAN precursor and the timing of nitrogen. With better-controlled condition, the strength of the fiber can achieve up to 400 GPa after this pyrolysis process.

[1]  B. Cho,et al.  Electrochemical properties of PAN-based carbon fibers as anodes for rechargeable lithium ion batteries , 2001 .

[2]  J. Schurz Discoloration effects in acrylonitrile polymers , 1958 .

[3]  C. Snape,et al.  In situ NMR investigation into the thermal degradation and stabilisation of PAN , 2001 .

[4]  C. Sauder,et al.  Thermomechanical properties of carbon fibres at high temperatures (up to 2000 °C) , 2002 .

[5]  S. Asai,et al.  Strengthening of Carbon Fibers by Imposition of a High Magnetic Field in a Carbonization Process , 2002 .

[6]  H. N. Friedlander,et al.  On the Chromophore of Polyacrylonitrile. VI. Mechanism of Color Formation in Polyacrylonitrile , 1968 .

[7]  J. C. del Río,et al.  Thermal study of the effect of several solvents on polymerization of acrylonitrile and their subsequent pyrolysis , 2001 .

[8]  J. N. Hay,et al.  Thermal coloration and insolubilization in polyacrylonitrile , 1962 .

[9]  Rakesh B. Mathur,et al.  A new approach to thermal stabilisation of PAN fibres , 1992 .

[10]  T. Setnescu,et al.  IR and X-ray characterization of the ferromagnetic phase of pyrolysed polyacrylonitrile , 1999 .

[11]  Dan D. Edie,et al.  Flow behavior of mesophase pitch , 2003 .

[12]  M. Matsuo,et al.  Small angle X-ray scattering from voids within fibers during the stabilization and carbonization stages , 2003 .

[13]  O. P. Bahl,et al.  Role of oxygen during thermal stabilisation of pan fibres , 1980 .

[14]  Mel M. Schwartz,et al.  Encyclopedia of Materials, Parts and Finishes , 2002 .

[15]  A. Abhiraman,et al.  Conversion of acrylonitrile-based precursor fibres to carbon fibres , 1987 .

[16]  S. Chand,et al.  Review Carbon fibers for composites , 2000 .

[17]  J. Liu,et al.  Continuous carbonization of polyacrylonitrile-based oxidized fibers : aspects on mechanical properties and morphological structure , 1994 .

[18]  R. Gustafson,et al.  Cyclization kinetics of poly(acrylonitrile) , 1996 .

[19]  Chunye Xu,et al.  Study of carbon films from PAN/VGCF composites by gelation/crystallization from solution , 2002 .

[20]  S. Ozbek,et al.  Strain-induced density changes in PAN-based carbon fibres , 2000 .

[21]  Garth L. Wilkes,et al.  Dynamic oscillatory shear properties of potentially melt processable high acrylonitrile terpolymers , 2002 .

[22]  S. Peters Handbook of Composites , 1998 .

[23]  M. Monthioux,et al.  An EELS study of the structural and chemical transformation of PAN polymer to solid carbon , 2004 .

[24]  Tse-Hao Ko The influence of pyrolysis on physical properties and microstructure of modified PAN fibers during carbonization , 1991 .

[25]  Z. Bashir A critical review of the stabilisation of polyacrylonitrile , 1991 .

[26]  H. Ogawa Architectural application of carbon fibers: Development of new carbon fiber reinforced glulam , 2000 .

[27]  R. Houtz "Orlon" Acrylic Fiber: Chemistry and Properties , 1950 .

[28]  Tse-Hao Ko Raman spectrum of modified PAN‐based carbon fibers during graphitization , 1996 .

[29]  H. Ogawa,et al.  Oxidation behavior of polyacrylonitrile fibers evaluated by new stabilization index , 1995 .

[30]  Zhenyu Liu,et al.  Formation of N2 during carbonization of polyacrylonitrile using iron catalyst , 1997 .

[31]  Bernhard Wietek Fibers , 1963, Fiber Concrete.

[32]  R. Conley,et al.  Examination of the oxidative degradation of polyacrylonitrile using infrared spectroscopy , 1963 .

[33]  P. Painter,et al.  Fourier‐transform infrared studies on the thermal degradation of poly‐α‐deuteroacrylonitrile under reduced pressure , 1979 .

[34]  A. Snow,et al.  On the exotherm of polyacrylonitrile: Pyrolysis of the homopolymer under inert conditions☆ , 1990 .

[35]  J. Brandrup,et al.  On the Chromophore of Polyacrylonitrile. IV. Thermal Oxidation of Polyacrylonitrile and Other Nitrile-Containing Compounds , 1968 .

[36]  Frank T. Traceski Assessing Industrial Capabilities for Carbon Fiber Production , 1999 .

[37]  Ryutaro Fukushima CARBON FIBERS , 2002 .

[38]  R. Mathur,et al.  Single step carbonization and graphitization of highly stabilized PAN fibers , 1997 .

[39]  Robert W. Lewis,et al.  Graphite Fibers and Composites , 1982 .

[40]  L. M. Manocha,et al.  Characterization of oxidised pan fibres , 1974 .

[41]  R. Mathur,et al.  Post spinning treatment of PAN fibers using succinic acid to produce high performance carbon fibers , 1998 .

[42]  R. Mathur,et al.  Post spinning modification of PAN fibres — a review , 1997 .

[43]  A. Derré,et al.  High temperature thermal and mechanical properties of high tensile carbon single filaments , 1996 .

[44]  R. Mathur,et al.  Structure of PAN fibres and its relationship to resulting carbon fibre properties , 1981 .

[45]  Erich Fitzer,et al.  The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor , 1975 .

[46]  P. Wang,et al.  Conversion of polyacrylonitrile fibers to activated carbon fibers: Effect of preoxidation extent , 2003 .

[47]  A. Ismail,et al.  Influence of the thermastabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O2/N2 separation , 2003 .

[48]  N. Grassie,et al.  Pyrolysis of polyacrylonitrile and related polymers—I. Thermal analysis of polyacrylonitrile , 1970 .

[49]  S. K. Bhattacharya,et al.  Conversion of acrylonitrile-based precursors to carbon fibres , 1987 .

[50]  M. Coleman,et al.  Fourier transform infrared studies on the thermal degradation of polyacrylonitrile , 1978 .

[51]  J. Parsons,et al.  Pyrolysis of polyacrylonitrile , 1956 .

[52]  J. Hayashi,et al.  Formation of toxic gases during pyrolysis of polyacrylonitrile and nylons , 1995 .

[53]  Ming Yang,et al.  Influence of precursor structure on the properties of polyacrylonitrile‐based activated carbon hollow fiber , 1996 .

[54]  N. Grassie,et al.  Pyrolysis of polyacrylonitrile and related polymers—III. Thermal analysis of preheated polymers , 1971 .

[55]  Alex Tullo CARBON FIBER: STILL A GAMBLE , 2000 .

[56]  R E Shepler,et al.  CARBON-FIBER COMPOSITES , 1979 .

[57]  Robert A. Meyers,et al.  Encyclopedia of physical science and technology , 1987 .

[58]  R. B. Thompson,et al.  Basic dyeability and acid content of high‐conversion polyacrylonitrile , 1972 .

[59]  Liu Jie,et al.  Evolution of structure and properties of PAN precursors during their conversion to carbon fibers , 2003 .

[60]  J. Tsai,et al.  The effect of the side chain of acrylate comonomers on the orientation, pore‐size distribution, and properties of polyacrylonitrile precursor and resulting carbon fiber , 1991 .

[61]  P. Budd,et al.  Thermal stabilization of polyacrylonitrile fibres , 1999 .

[62]  M. Coleman,et al.  Fourier transform ir studies of the degradation of polyacrylonitrile copolymers—II: Acrylonitrile/methacrylic acid copolymers , 1981 .

[63]  N. Grassie,et al.  Pyrolysis of polyacrylonitrile and related polymers—VI. Acrylonitrile copolymers containing carboxylic acid and amide structures , 1972 .

[64]  M. Coleman,et al.  Studies of the degradation of copolymers of acrylonitrile and acrylamide in air at 200°C. Speculations on the role of the preoxidation step in carbon fiber formation , 1983 .

[65]  E. Fitzer Pan-based carbon fibers—present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters , 1989 .

[66]  M. Inagaki,et al.  Denitrogenation behavior and tensile strength increase during carbonization of stabilized pan fibers , 1998 .

[67]  Tse-Hao Ko,et al.  Influence of continuous stabilization on the physical properties and microstructure of PAN‐based carbon fibers , 1991 .

[68]  R. W. Snyder,et al.  Studies of the degradation of acrylonitrile/acrylamide copolymers as a function of composition and temperature , 1983 .

[69]  John A. N. Lee Influence of tension during oxidative stabilization on SO2 adsorption characteristics of polyacrylonitrile (PAN) based activated carbon fibres , 1997 .

[70]  Ian R. Harrison,et al.  New aspects in the oxidative stabilization of PAN-based carbon fibers: II , 1996 .

[71]  D. Edie The effect of processing on the structure and properties of carbon fibers , 1998 .

[72]  P. Rouxhet,et al.  Bulk and surface chemical functionalities of type III PAN-based carbon fibres , 2003 .

[73]  George Lubin,et al.  Handbook of Composites , 1982 .

[74]  K. Wiles DETERMINATION OF REACTIVITY RATIOS FOR ACRYLONITRILE/METHYL ACRYLATE RADICAL COPOLYMERIZATION VIA NONLINEAR METHODOLOGIES USING REAL TIME FTIR , 2002 .

[75]  A. Ogale,et al.  UV stabilization route for melt-processible PAN-based carbon fibers , 2003 .

[76]  M. Coleman,et al.  Fourier transform ir studies of the degradation of polyacrylonitrile copolymers—I: Introduction and comparative rates of the degradation of three copolymers below 200°c and under reduced pressure , 1981 .

[77]  R. Mathur,et al.  Effect of load on the mechanical properties of carbon fibres from pan precursor , 1979 .

[78]  Erich Fitzer,et al.  Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres , 1986 .

[79]  Tse-Hao Ko,et al.  The influence of cobaltous chloride modification on physical properties and microstructure of modified PAN fiber during carbonization , 1998 .

[80]  E. Thompson The thermal behavior of acrylonitrile polymers. I. On the decomposition of polyacrylonitrile between 250 and 325°C. , 1966 .

[81]  Ian R. Harrison,et al.  MODIFICATION OF POLYACRYLONITRILE (PAN)CARBON FIBER PRECURSOR VIA POST-SPINNING PLASTICIZATION AND STRETCHING IN DIMETHYL FORMAMIDE (DMF) , 2002 .

[82]  A. K. Banthia,et al.  Synthesis and characterization of acrylonitrile methyl acrylate statistical copolymers as melt processable carbon fiber precursors , 2002 .