Columnar projections from the cholinergic nucleus isthmi to the optic tectum in chicks (Gallus gallus): A possible substrate for synchronizing tectal channels

The cholinergic division of the avian nucleus isthmi, the homolog of the mammalian nucleus parabigeminalis, is composed of the pars parvocellularis (Ipc) and pars semilunaris (SLu). Ipc and SLu were studied with in vivo and in vitro tracing and intracellular filling methods. 1) Both nuclei have reciprocal homotopic connections with the ipsilateral optic tectum. The SLu connection is more diffuse than that of Ipc. 2) Tectal inputs to Ipc and SLu are Brn3a‐immunoreactive neurons in the inner sublayer of layer 10. Tectal neurons projecting on Ipc possess “shepherd's crook” axons and radial dendritic fields in layers 2–13. 3) Neurons in the mid‐portion of Ipc possess a columnar spiny dendritic field. SLu neurons have a large, nonoriented spiny dendritic field. 4) Ipc terminals form a cylindrical brush‐like arborization (35–50 μm wide) in layers 2–10, with extremely dense boutons in layers 3–6, and a diffuse arborization in layers 11–13. SLu neurons terminate in a wider column (120–180 μm wide) lacking the dust‐like boutonal features of Ipc and extend in layers 4c–13 with dense arborizations in layers 4c, 6, and 9–13. 5) Ipc and SLu contain specialized fast potassium ion channels. We propose that dense arborizations of Ipc axons may be directed to the distal dendritic bottlebrushes of motion detecting tectal ganglion cells (TGCs). They may provide synchronous activation of a group of adjacent bottlebrushes of different TGCs of the same type via their intralaminar processes, and cross channel activation of different types of TGCs within the same column of visual space. J. Comp. Neurol. 494:7–35, 2006. © 2005 Wiley‐Liss, Inc.

[1]  Juan Carlos Letelier,et al.  Oscillatory Bursts in the Optic Tectum of Birds Represent Re-Entrant Signals from the Nucleus Isthmi Pars Parvocellularis , 2005, The Journal of Neuroscience.

[2]  A. Alpár,et al.  The axon arbourisation of nuclei isthmi neurons in the optic tectum of the chick and pigeon. A Golgi and anterograde tracer-study , 2005, Anatomy and Embryology.

[3]  P. Monsivais,et al.  Activity‐dependent regulation of the potassium channel subunits Kv1.1 and Kv3.1 , 2004, The Journal of comparative neurology.

[4]  H. Karten,et al.  Morphology and connections of nucleus isthmi pars magnocellularis in chicks (Gallus gallus) , 2004, The Journal of comparative neurology.

[5]  E. Gruberg,et al.  Nucleus isthmi enhances calcium influx into optic nerve fiber terminals in Rana pipiens , 2003, Brain Research.

[6]  H. Karten,et al.  Spatial organization of the pigeon tectorotundal pathway: An interdigitating topographic arrangement , 2003, The Journal of comparative neurology.

[7]  Shurong Wang,et al.  The nucleus isthmi and dual modulation of the receptive field of tectal neurons in non-mammals , 2003, Brain Research Reviews.

[8]  D. Davies,et al.  The ramification and connections of retinal fibres in layer 7 of the domestic chick optic tectum: a Golgi impregnation, anterograde tracer and GABA‐immunogold study , 2002, Journal of anatomy.

[9]  D Kleinfeld,et al.  Chattering and Differential Signal Processing in Identified Motion-Sensitive Neurons of Parallel Visual Pathways in the Chick Tectum , 2001, The Journal of Neuroscience.

[10]  O. Güntürkün,et al.  Nucleus isthmi, pars semilunaris as a key component of the tectofugal visual system in pigeons , 2001, The Journal of comparative neurology.

[11]  E. Turner,et al.  Signals from the ventral midline and isthmus regulate the development of Brn3.0-expressing neurons in the midbrain , 2001, Mechanisms of Development.

[12]  Catherine E. Carr,et al.  Expression of the Kv3.1 Potassium Channel in the Avian Auditory Brainstem , 2001, The Journal of Neuroscience.

[13]  H. Karten,et al.  Bottlebrush dendritic endings and large dendritic fields: Motion‐detecting neurons in the mammalian tectum , 2000, The Journal of comparative neurology.

[14]  Y. Wang,et al.  Excitatory and inhibitory receptive fields of tectal cells are differentially modified by magnocellular and parvocellular divisions of the pigeon nucleus isthmi , 2000, Journal of Comparative Physiology A.

[15]  H. Wagner,et al.  Horizontal-disparity tuning of neurons in the visual forebrain of the behaving barn owl. , 2000, Journal of neurophysiology.

[16]  S. Udin,et al.  Effects of choline and other nicotinic agonists on the tectum of juvenile and adult Xenopus frogs: a patch-clamp study , 1999, Neuroscience.

[17]  H. Karten,et al.  Bottlebrush dendritic endings and large dendritic fields: Motion‐detecting neurons in the tectofugal pathway , 1998, The Journal of comparative neurology.

[18]  W. Wiggers Isthmotectal connections in plethodontid salamanders , 1998, The Journal of comparative neurology.

[19]  L. Kaczmarek,et al.  Contribution of the Kv3.1 potassium channel to high‐frequency firing in mouse auditory neurones , 1998, The Journal of physiology.

[20]  Hermann Wagner,et al.  Stereoscopic depth perception in the owl , 1998, Neuroreport.

[21]  T. Tömböl,et al.  GABA-immunohistological observations, at the electron-microscopical level, of the neurons of isthmic nuclei in chicken, Gallus domesticus , 1998, Cell and Tissue Research.

[22]  L. Britto,et al.  Distribution of calcium-binding proteins in the chick visual system. , 1997, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[23]  H. Karten,et al.  Two distinct populations of tectal neurons have unique connections within the retinotectorotundal pathway of the pigeon (Columba livia) , 1997, The Journal of comparative neurology.

[24]  A. Pestronk Histology of the Nervous System of Man and Vertebrates , 1997, Neurology.

[25]  Andrew J King,et al.  Topographic organization of projection from the parabigeminal nucleus to the superior colliculus in the ferret revealed with fluorescent latex microspheres , 1996, Brain Research.

[26]  Johan Ericson,et al.  Two Critical Periods of Sonic Hedgehog Signaling Required for the Specification of Motor Neuron Identity , 1996, Cell.

[27]  H. Karten,et al.  GABAergic inputs to the nucleus rotundus (pulvinar inferior) of the pigeon (Columba livia) , 1996, The Journal of comparative neurology.

[28]  H. Karten,et al.  An in vitro study of retinotectal transmission in the chick: Role of glutamate and GABA in evoked field potentials , 1996, Visual Neuroscience.

[29]  F. Freemon Histology of the Nervous System of Man and Vertebrates , 1996 .

[30]  J. Schmidt The modulatory cholinergic system in goldfish tectum may be necessary for retinotopic sharpening , 1995, Visual Neuroscience.

[31]  E. Turner,et al.  Brn-3.0 expression identifies early post-mitotic CNS neurons and sensory neural precursors , 1995, Mechanisms of Development.

[32]  A. Reiner,et al.  Distribution of choline acetyltransferase immunoreactivity in the pigeon brain , 1994, The Journal of comparative neurology.

[33]  D. Felix,et al.  Effect of acetylcholine and NMDA on neurones of avian tectum and nucleus isthmi. , 1994, Neuroreport.

[34]  H. Karten,et al.  Synaptic interrelationships between the optic tectum and the ipsilateral nucleus isthmi in Rana pipiens , 1994, The Journal of comparative neurology.

[35]  E. Turner,et al.  Brn-3.0: a POU-domain protein expressed in the sensory, immune, and endocrine systems that functions on elements distinct from known octamer motifs. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Hermann Wagner,et al.  Disparity-sensitive cells in the owl have a characteristic disparity , 1993, Nature.

[37]  C. Jeon,et al.  Organization and synaptic connections of cholinergic fibers in the cat superior colliculus , 1993, The Journal of comparative neurology.

[38]  Floris G. Wouterlood,et al.  The anterograde neuroanatomical tracer biotinylated dextran-amine: comparison with the tracer Phaseolus vulgaris-leucoagglutinin in preparations for electron microscopy , 1993, Journal of Neuroscience Methods.

[39]  H. Karten,et al.  Immunohistochemical localization of nicotinic acetylcholine receptor subunits in the mesencephalon and diencephalon of the chick (Gallus gallus) , 1992, The Journal of comparative neurology.

[40]  A. Reiner,et al.  Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies , 1992, Journal of Neuroscience Methods.

[41]  D. Fitzpatrick,et al.  A projection from the parabigeminal nucleus to the pulvinar nucleus in Galago , 1992, The Journal of comparative neurology.

[42]  J. Schmidt,et al.  The long latency component of retinotectal transmission: Enhancement by stimulation of nucleus isthmi or tectobulbar tract and block by nicotinic cholinergic antagonists , 1991, Neuroscience.

[43]  H. Karten,et al.  Distribution, laminar location, and morphology of tectal neurons projecting to the isthmo‐optic nucleus and the nucleus isthmi, pars parvocellularis in the pigeon (Columba livia) and chick (Gallus domesticus): A retrograde labelling study , 1991, The Journal of comparative neurology.

[44]  M. Wallace,et al.  Nucleus isthmi: Its contribution to tectal acetylcholinesterase and choline acetyltransferase in the frog Rana pipiens , 1990, Neuroscience.

[45]  P. Whiting,et al.  Brain α-bungarotoxin binding protein cDNAs and MAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily , 1990, Neuron.

[46]  T. Hughes A light- and electron-microscopic investigation of the optic tectum of the frog, Rana pipiens, I: The retinal axons , 1990, Visual Neuroscience.

[47]  Onur Güntürkün,et al.  The topographical projection of the nucleus isthmi pars parvocellularis (Ipc) onto the tectum opticum in the pigeon , 1990, Neuroscience Letters.

[48]  S. Udin,et al.  Ultrastructure of the crossed isthmotectal projection in xenopus frogs , 1990, The Journal of comparative neurology.

[49]  G. Roth,et al.  Distribution of substance P‐like, leucine‐enkephalin‐like, and bombesine‐like immunoreactivity and acetylcholinesterase activity in the visual system of salamanders , 1989, The Journal of comparative neurology.

[50]  W. C. Hall,et al.  Cholinergic innervation of the superior colliculus in the cat , 1989, The Journal of comparative neurology.

[51]  V. Chiappinelli,et al.  Immunohistochemical localization of choline acetyltransferase in the chicken mesencephalon , 1989, The Journal of comparative neurology.

[52]  L. Puelles,et al.  Avian nucleus isthmi ventralis projects to the contralateral optic tectum , 1989, Brain Research.

[53]  J. Lindstrom,et al.  Nicotinic acetylcholine receptor-like molecules in the retina, retinotectal pathway, and optic tectum of the frog , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  P. Whiting,et al.  Structurally different neuronal nicotinic acetylcholine receptor subtypes purified and characterized using monoclonal antibodies , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  M. Sereno,et al.  Caudal topographic nucleus isthmi and the rostral nontopographic nucleus isthmi in the turtle, pseudemys scripta , 1987, The Journal of comparative neurology.

[56]  O. Güntürkün A Golgi study of the isthmic nuclei in the pigeon (Columba Iivia) , 1987, Cell and Tissue Research.

[57]  D. Mash,et al.  Cholinergic projections from the parabigeminal nucleus (Ch8) to the superior colliculus in the mouse: a combined analysis of horseradish peroxidase transport and choline acetyltransferase immunohistochemistry , 1986, Brain Research.

[58]  Carl D. Johnson,et al.  Monoclonal Antibodies and Polyvalent Antiserum to Chicken Choline Acetyltransferase , 1986, Journal of neurochemistry.

[59]  D. A. Godfrey,et al.  Distributions of choline acetyltransferase and acetylcholinesterase activities in layers of rat superior colliculus. , 1985, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[60]  Shurong Wang,et al.  The effect of acetylcholine on neurones of the amphibian nucleus isthmi , 1985, Brain Research.

[61]  J. Horton,et al.  Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[62]  F. Reinoso-suárez,et al.  Parabigeminal projections to the superior colliculus in the cat , 1983, Brain Research.

[63]  V. Perry,et al.  Retrograde and anterograde‐transneuronal degeneration in the parabigeminal nucleus following tectal lesions in developing rats , 1983, The Journal of comparative neurology.

[64]  H. Karten,et al.  Subnuclear organization of the dorsal motor nucleus of the vagus nerve in the pigeon, Columba livia , 1983, The Journal of comparative neurology.

[65]  C. Rocha-Miranda,et al.  The organization of the parabigemino-tectal projections in the opossum , 1980, Brain Research.

[66]  M. Cuénod,et al.  Transmitter-related retrograde labeling in the pigeon optic lobe; a high resolution autoradiographic study , 1980, Brain Research.

[67]  H Sherk,et al.  Connections and visual-field mapping in cat's tectoparabigeminal circuit. , 1979, Journal of neurophysiology.

[68]  H Sherk,et al.  A comparison of visual-response properties in cat's parabigeminal nucleus and superior colliculus. , 1979, Journal of neurophysiology.

[69]  E. Kawana,et al.  Efferent projections of the parabigeminal nucleus in rats: A horseradish peroxidase (HRP) study , 1979, Brain Research.

[70]  B. Stein,et al.  Sources of subcortical projections to the superior colliculus in the cat , 1979, The Journal of comparative neurology.

[71]  M. Magnin,et al.  Afferent and efferent connections of the parabigeminal nucleus in cat revealed by retrograde axonal transport of horseradish peroxidase , 1979, Brain Research.

[72]  A. Contestabile,et al.  Acetylcholinesterase activity in the normal and retino-deprived optic tectum of the quail , 1978, Histochemistry.

[73]  D. Felix,et al.  The role of glutamate in pigeon optic tectum , 1978, Brain Research.

[74]  S. Udin,et al.  Topographic projections between the nucleus isthmi and the tectum of the frog rana pipiens , 1978, The Journal of comparative neurology.

[75]  Helen Sherk,et al.  Visual response properties and visual field topography in the cat's parabigeminal nucleus , 1978, Brain Research.

[76]  A. Graybiel A satellite system of the superior colliculus: the parabigeminal nucleus and its projections to the superficial collicular layers , 1978, Brain Research.

[77]  A. Tokunaga,et al.  Neuronal organization of the corpus parabigeminum in the rat , 1978, Experimental Neurology.

[78]  S. Hunt,et al.  Characterization of the pigeon isthmo-tectal pathway by selective uptake and retrograde movement of radioactive compounds and by golgi-like horseradish peroxidase labeling , 1977, Brain Research.

[79]  S. Hunt,et al.  Observations on the projections and intrinsic organization of the pigeon optic tectum: An autoradiographic study based on anterograde and retrograde, axonal and dendritic flow , 1976, The Journal of comparative neurology.

[80]  H. Karten,et al.  Organization of the tectofugal visual pathway in the pigeon: A retrograde transport study , 1976, The Journal of comparative neurology.

[81]  B. Hayes,et al.  An electron microscope study of the retino‐receptive layers of the pigeon optic tectum , 1975, The Journal of comparative neurology.

[82]  S. Vaage The histogenesis of the isthmic nuclei in chick embryos (Gallus domesticus) , 1973, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[83]  W Hodos,et al.  Neural connections of the “visual wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia) , 1973, The Journal of comparative neurology.

[84]  W. C. Hall,et al.  Evolution of the primate visual system: anterograde degeneration studies of the tecto-pulvinar system. , 1973, American journal of physical anthropology.

[85]  M Cuénod,et al.  Electrophysiology of contralateral and ipsilateral visual projections to the Wulst in pigeon (Columba livia). , 1971, The International journal of neuroscience.

[86]  H. Karten,et al.  A stereotaxic atlas of the brain of the pigeon (Columba livia) , 1967 .

[87]  E. Scharrer,et al.  A contribution to the “chemoarchitectonics” of the optic tectum of the brain of the pigeon , 1949, The Journal of comparative neurology.

[88]  Clark We The Medical Geniculate Body and the Nucleus Isthmi. , 1933 .

[89]  B. Frost,et al.  Magnocellular and parvocellular divisions of pigeon nucleus isthmi differentially modulate visual responses in the tectum , 2004, Experimental Brain Research.

[90]  B. J. Frost,et al.  Visual response characteristics of neurons in the nucleus isthmi magnocellularis and nucleus isthmi parvocellularis of pigeons , 2004, Experimental Brain Research.

[91]  D. B. Bender,et al.  Bilateral projections from the parabigeminal nucleus to the superior colliculus in monkey , 2004, Experimental Brain Research.

[92]  T. Collett,et al.  A possible mechanism for binocular depth judgements in anurans , 2004, Experimental Brain Research.

[93]  Harald Luksch,et al.  Cytoarchitecture of the Avian Optic Tectum: Neuronal Substrate for Cellular Computation , 2003, Reviews in the neurosciences.

[94]  O. Güntürkün,et al.  Structural organization of parallel information processing within the tectofugal visual system of the pigeon , 2001, The Journal of comparative neurology.

[95]  T. Tömböl,et al.  Some data on connections of neurons of nuclei isthmi of the chicken. , 1995, Journal fur Hirnforschung.

[96]  M. Wallace,et al.  Behavioral and physiological consequences of unilateral ablation of the nucleus isthmi in the leopard frog. , 1991, Brain, behavior and evolution.

[97]  W. Kuenzel,et al.  A stereotaxic atlas of the brain of the chick (Gallus domesticus) , 1988 .

[98]  Stephen P. Hunt,et al.  The Avian Optic Tectum: A Synthesis of Morphology and Biochemistry , 1984 .

[99]  V. Franceschini,et al.  The pattern of acetylcholinesterase distribution in the normal and retino-deprived optic tectum of newt. , 1982, Zeitschrift fur mikroskopisch-anatomische Forschung.

[100]  A. Contestabile,et al.  Cytochemical study of cholinesterases in the normal and retino-derived optic tectum of reptiles. , 1982, Journal fur Hirnforschung.