TriAnd and its siblings: satellites of satellites in the Milky Way halo

We explore the Triangulum–Andromeda (TriAnd) overdensity in the SPLASH (Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo) and SEGUE (the Sloan Extension for Galactic Understanding and Exploration) spectroscopic surveys. Milky Way main-sequence turn-off stars in the SPLASH survey reveal that the TriAnd overdensity and the recently discovered Pan-Andromeda Archaeological Survey (PAndAS) stream share a common heliocentric distance (D ∼ 20 kpc), position on the sky, and line-of-sight velocity (VGSR ∼ 50 km s−1). Similarly, A-type, giant, and main-sequence turn-off stars selected from the SEGUE survey in the vicinity of the Segue 2 satellite show that TriAnd is prevalent in these fields, with a velocity and distance similar to Segue 2. The coincidence of the PAndAS stream and Segue 2 satellite in positional and velocity space to TriAnd suggests that these substructures are all associated, and may be a fossil record of group-infall on to the Milky Way halo. In this scenario, the Segue 2 satellite and PAndAS stream are ‘satellites of satellites’, and the large, metal-rich TriAnd overdensity is the remains of the group central.

[1]  R. Beaton,et al.  EXPLORING HALO SUBSTRUCTURE WITH GIANT STARS. XIV. THE NATURE OF THE TRIANGULUM-ANDROMEDA STELLAR FEATURES , 2014, 1407.4463.

[2]  P. Guhathakurta,et al.  METALLICITY EVOLUTION OF THE SIX MOST LUMINOUS M31 DWARF SATELLITES , 2014, 1405.4424.

[3]  Sergey E. Koposov,et al.  TOUCHING THE VOID: A STRIKING DROP IN STELLAR HALO DENSITY BEYOND 50 kpc , 2014, 1403.7205.

[4]  M. Irwin,et al.  THE PAndAS FIELD OF STREAMS: STELLAR STRUCTURES IN THE MILKY WAY HALO TOWARD ANDROMEDA AND TRIANGULUM , 2014, 1403.4945.

[5]  Sergey E. Koposov,et al.  Strong RR Lyrae excess in the Hercules-Aquila Cloud , 2014, Monthly Notices of the Royal Astronomical Society.

[6]  Judith G. Cohen,et al.  THE UNIVERSAL STELLAR MASS–STELLAR METALLICITY RELATION FOR DWARF GALAXIES , 2013, 1310.0814.

[7]  E. Kirby,et al.  SEGUE 2: THE LEAST MASSIVE GALAXY , 2013, 1304.6080.

[8]  A. Deason,et al.  THE VELOCITY ANISOTROPY OF DISTANT MILKY WAY HALO STARS FROM HUBBLE SPACE TELESCOPE PROPER MOTIONS , 2013, 1302.5111.

[9]  Sergey E. Koposov,et al.  Precession of the Sagittarius stream , 2013, Monthly Notices of the Royal Astronomical Society.

[10]  H. Rix,et al.  THE SEGUE K GIANT SURVEY. II. A CATALOG OF DISTANCE DETERMINATIONS FOR THE SEGUE K GIANTS IN THE GALACTIC HALO , 2012, 1211.0549.

[11]  R. Beaton,et al.  GLOBAL PROPERTIES OF M31'S STELLAR HALO FROM THE SPLASH SURVEY. I. SURFACE BRIGHTNESS PROFILE , 2012, 1210.3362.

[12]  M. Geha,et al.  A COLD MILKY WAY STELLAR STREAM IN THE DIRECTION OF TRIANGULUM , 2012, 1209.5391.

[13]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[14]  A. Connolly,et al.  THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.

[15]  Ž. Ivezić,et al.  UPDATE ON THE NATURE OF VIRGO OVERDENSITY , 2012, 1202.6367.

[16]  S. Majewski,et al.  PROBING THE HALO FROM THE SOLAR VICINITY TO THE OUTER GALAXY: CONNECTING STARS IN LOCAL VELOCITY STRUCTURES TO LARGE-SCALE CLOUDS , 2012, 1202.5311.

[17]  V. Belokurov,et al.  The Milky Way stellar halo out to 40 kpc: squashed, broken but smooth , 2011, 1104.3220.

[18]  Benjamin A. Willett,et al.  THE ORBIT OF THE ORPHAN STREAM , 2010, 1001.0576.

[19]  W. Dehnen,et al.  Local kinematics and the local standard of rest , 2009, 0912.3693.

[20]  Warren R. Brown,et al.  VELOCITY DISPERSION PROFILE OF THE MILKY WAY HALO , 2009, 0910.2242.

[21]  Zurich,et al.  The discovery of Segue 2: a prototype of the population of satellites of satellites , 2009, 0903.0818.

[22]  Heidi Jo Newberg,et al.  SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.

[23]  N. W. Evans,et al.  A SPECTROSCOPIC CONFIRMATION OF THE BOOTES II DWARF SPHEROIDAL , 2008, 0809.0700.

[24]  Tucson,et al.  Leo V: A Companion of a Companion of the Milky Way Galaxy? , 2008, 0807.2831.

[25]  H. Rix,et al.  The Milky Way’s Circular Velocity Curve to 60 kpc and an Estimate of the Dark Matter Halo Mass from the Kinematics of ~2400 SDSS Blue Horizontal-Branch Stars , 2008, 0801.1232.

[26]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. I. DESCRIPTION AND COMPARISON OF INDIVIDUAL METHODS , 2007, 0710.5645.

[27]  IoA,et al.  Galactic Halo Stellar Structures in the Triangulum-Andromeda Region , 2007, astro-ph/0703506.

[28]  Sergey E. Koposov,et al.  submitted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE HERCULES-AQUILA CLOUD , 2007 .

[29]  Sergey E. Koposov,et al.  submitted to The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 CATS AND DOGS, HAIR AND A HERO: A QUINTET OF NEW MILKY WAY COMPANIONS † , 2022 .

[30]  D. York,et al.  An Orphan in the “Field of Streams” , 2006, astro-ph/0605705.

[31]  C. Grillmair Detection of a 60°-long Dwarf Galaxy Debris Stream , 2006, astro-ph/0605396.

[32]  S. Majewski,et al.  A New Method for Isolating M31 Red Giant Stars: The Discovery of Stars out to a Radial Distance of 165 kpc , 2006, astro-ph/0605171.

[33]  Princeton,et al.  The Field of Streams: Sagittarius and Its Siblings , 2006, astro-ph/0605025.

[34]  B. Yanny,et al.  A Faint New Milky Way Satellite in Bootes , 2006, astro-ph/0604355.

[35]  U. Cambridge,et al.  Outer structure of the Galactic warp and flare: explaining the Canis Major over-density , 2006, astro-ph/0603385.

[36]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[37]  Andrew A. West,et al.  A New Milky Way Companion: Unusual Globular Cluster or Extreme Dwarf Satellite? , 2004, astro-ph/0410416.

[38]  S. Majewski,et al.  Detection of the Main-Sequence Turnoff of a Newly Discovered Milky Way Halo Structure in the Triangulum-Andromeda Region , 2004, astro-ph/0406221.

[39]  S. Majewski,et al.  Dynamics and Stellar Content of the Giant Southern Stream in M31. I. Keck Spectroscopy of Red Giant Stars , 2004, astro-ph/0406145.

[40]  S. Majewski,et al.  Exploring Halo Substructure with Giant Stars: A Diffuse Star Cloud or Tidal Debris around the Milky Way in Triangulum-Andromeda , 2004, astro-ph/0405437.

[41]  M. F. Skrutskie,et al.  A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms , 2003, astro-ph/0304198.

[42]  M. Irwin,et al.  One ring to encompass them all: a giant stellar structure that surrounds the Galaxy , 2003, astro-ph/0301067.

[43]  Heather A. Rave,et al.  The Ghost of Sagittarius and Lumps in the Halo of the Milky Way , 2001, astro-ph/0111095.

[44]  S. Majewski,et al.  Exploring Halo Substructure with Giant Stars. I. Survey Description and Calibration of the Photometric Search Technique , 2000, astro-ph/0006411.

[45]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[46]  D. York,et al.  Identification of A-colored Stars and Structure in the Halo of the Milky Way from Sloan Digital Sky Survey Commissioning Data , 2000, astro-ph/0004128.

[47]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[48]  F. Prada,et al.  Where are the missing galactic satellites? , 1999, astro-ph/9901240.

[49]  G. A. Rutledge,et al.  GALACTIC GLOBULAR CLUSTER METALLICITY SCALE FROM THE CA II TRIPLET II. RANKINGS, COMPARISONS, AND PUZZLES , 1997, astro-ph/9707068.

[50]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[51]  B. Moore Evidence against dissipation-less dark matter from observations of galaxy haloes , 1994, Nature.

[52]  M. Irwin,et al.  A dwarf satellite galaxy in Sagittarius , 1994, Nature.

[53]  J. Primack,et al.  OBSERVATIONAL AND THEORETICAL CONSTRAINTS ON SINGULAR DARK MATTER HALOS , 1994, astro-ph/9402004.