Strongly Degenerate Parabolic-Hyperbolic Systems Modeling Polydisperse Sedimentation with Compression

We show how existing models for the sedimentation of monodisperse flocculated suspensions and of polydisperse suspensions of rigid spheres differing in size can be combined to yield a new theory of the sedimentation processes of polydisperse suspensions forming compressible sediments ("sedimentation with compression"' or "sedimentation-consolidation process"). For N solid particle species, this theory reduces in one space dimension to an $N\times N$ coupled system of quasi-linear degenerate convection-diffusion equations. Analyses of the characteristic polynomials of the Jacobian of the convective flux vector and of the diffusion matrix show that this system is of strongly degenerate parabolic-hyperbolic type for arbitrary N and particle size distributions. Bounds for the eigenvalues of both matrices are derived. The mathematical model for N=3$ is illustrated by a numerical simulation obtained by the Kurganov-Tadmor central difference scheme for convection-diffusion problems. The numerical scheme exploits...

[1]  R. A. Ford,et al.  Simulation of Sedimentation of Monodisperse and Polydisperse Suspensions , 2003 .

[2]  Barbara Lee Keyfitz,et al.  Multiphase saturation equations, change of type and inaccessible regions , 1993 .

[3]  Jesper Oppelstrup,et al.  Consolidation of concentrated suspensions – shear and irreversible floc structure rearrangement , 2001 .

[4]  A. Spencer Continuum Mechanics , 1967, Nature.

[5]  E. M. Tory,et al.  Stochastic sedimentation and hydrodynamic diffusion , 2000 .

[6]  U. Schaflinger,et al.  Enhanced centrifugal separation with finite rossby numbers in cylinders with compartment-walls , 1987 .

[7]  Kerry A. Landman,et al.  Compressive yield stress of flocculated suspensions: Determination via experiment , 1996 .

[8]  Hamid Arastoopour,et al.  Analysis of vertical pneumatic conveying of solids using multiphase flow models , 1982 .

[9]  D. S. Pearson,et al.  Centrifugal Consolidation of Al2O3 and AI2O3/ZrO2 Composite Slurries vs Interparticle Potentials: Particle Packing and Mass Segregation , 1991 .

[10]  R. A. Ford,et al.  Simulation of sedimentation of bidisperse suspensions , 2004 .

[11]  J. M. Ekmann,et al.  Remarks on the modeling of fluidized systems , 1992 .

[12]  A. Ladd Sedimentation of homogeneous suspensions of non-Brownian spheres , 1997 .

[13]  P. M. Biesheuvel,et al.  Calculation of the composition profile of a functionally graded material produced by centrifugal casting , 2004 .

[14]  D. J. Wedlock,et al.  Sedimentation in polydisperse particulate suspensions , 1990 .

[15]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[16]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[17]  J. McLeod Nonlinear Diffusion Equations. , 1985 .

[18]  C. C. Wang,et al.  Corrigendum to my recent papers on “Representations for isotropic functions” , 1971 .

[19]  Corrado Mascia,et al.  Nonhomogeneous Dirichlet Problems for Degenerate Parabolic-Hyperbolic Equations , 2002 .

[20]  A. S. Mujumdar,et al.  Sedimentation of Small Particles in a Viscous Fluid , 1996 .

[21]  Raimund Bürger,et al.  A Strongly Degenerate Convection-diffusion Problem Modeling Centrifugation of Flocculated Suspensions , 2001 .

[22]  Jacob H. Masliyah,et al.  ]Hindered settling in a multi-species particle system , 1979 .

[23]  George M. Homsy,et al.  HINDERED SETTLING AND HYDRODYNAMIC DISPERSION IN QUIESCENT SEDIMENTING SUSPENSIONS , 1988 .

[24]  Frank M. Tiller,et al.  Variable flow rate in compactible filter cakes , 1999 .

[25]  P. M. Biesheuvel,et al.  Particle segregation during pressure filtration for cast formation , 2000 .

[26]  A. P. Higler,et al.  Graded membrane supports produced by centrifugal casting of a slightly polydisperse suspension , 2001 .

[27]  S. Lee,et al.  Combined effect of sedimentation velocity fluctuation and self-sharpening on interface broadening , 1992 .

[28]  J. Carrillo Entropy Solutions for Nonlinear Degenerate Problems , 1999 .

[29]  G. L. England,et al.  The Theory of One-Dimensional Consolidation of Saturated Clays , 1967 .

[30]  Gui-Qiang G. Chen,et al.  Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations , 2003 .

[31]  Monika Bargieł,et al.  A three-parameter Markov model for sedimentation III. A stochastic Runge—Kutta method for computing first-passage times , 1994 .

[32]  Raimund Bürger,et al.  Model equations for gravitational sedimentation-consolidation processes , 2000 .

[33]  Raimund Bürger,et al.  Sedimentation and Thickening , 1999 .

[34]  Gui-Qiang G. Chen,et al.  The Cauchy Problem for the Euler Equations for Compressible Fluids , 2002 .

[35]  Raimund Bürger,et al.  A critical look at the kinematic‐wave theory for sedimentation–consolidation processes in closed vessels , 2001 .

[36]  Elisabeth Guazzelli,et al.  EFFECT OF THE VESSEL SIZE ON THE HYDRODYNAMIC DIFFUSION OF SEDIMENTING SPHERES , 1995 .

[37]  G. Anestis,et al.  Sediment composition due to settling of particles of different sizes , 1985 .

[38]  D. Gidaspow Multiphase Flow and Fluidization , 1994 .

[39]  Mario Ohlberger A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations , 2001 .

[40]  J Braun Segregation of granular media by diffusion and convection. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Bandaru V. Ramarao,et al.  On instabilities arising during sedimentation of two-component mixtures of solids , 1984, Journal of Fluid Mechanics.

[42]  Yannick Peysson,et al.  Velocity fluctuations in a bidisperse sedimenting suspension , 1999 .

[43]  Piero D'Ancona,et al.  The Cauchy problem for weakly parabolic systems , 1997 .

[44]  W. Wendland,et al.  Existence, Uniqueness, and Stability of Generalized Solutions of an Initial-Boundary Value Problem for a Degenerating Quasilinear Parabolic Equation☆ , 1998 .

[45]  U. Schaflinger,et al.  Sedimentation in cylindrical centrifuges with compartments , 1986 .

[46]  R. de Boer,et al.  Theory of Porous Media , 2020, Encyclopedia of Continuum Mechanics.

[47]  Raimund Bürger,et al.  Numerical simulation of the settling of polydisperse suspensions of spheres , 2000 .

[48]  Thierry Gallouët,et al.  Convergence of a finite volume scheme for nonlinear degenerate parabolic equations , 2002, Numerische Mathematik.

[49]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[50]  Esipov Coupled Burgers equations: A model of polydispersive sedimentation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[51]  Ken Been,et al.  Self-weight consolidation of soft soils: an experimental and theoretical study , 1981 .

[52]  Knut-Andreas Lie,et al.  Numerical methods for the simulation of the settling of flocculated suspensions , 2000, Chemical Engineering Journal.

[53]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[54]  W. K. Sartory Three-component analysis of blood sedimentation by the method of characteristics , 1977 .

[55]  P. Benilan,et al.  Sur l'équation générale ut=φ(u)xx-ψ(u)x+ν , 1984 .

[56]  D. A. Drew,et al.  A simple multicomponent fluid theory with accurate physics , 1990 .

[57]  G. F. Smith On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors , 1971 .

[58]  Michael E. Taylor,et al.  Partial Differential Equations III , 1996 .

[59]  Xavier Flotats Ripoll Mathematical modeling of polydisperse suspensions sedimentation , 1995 .

[60]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[61]  Robert H. Davis Hydrodynamic diffusion of suspended particles: a symposium , 1996, Journal of Fluid Mechanics.

[62]  PETER J. MUCHA,et al.  A unifying theory for velocity fluctuations in sedimentation , 2002 .

[63]  M. J. Lockett,et al.  Sedimentation of Binary Particle Mixtures , 1979 .

[64]  Jianjun Zeng,et al.  A numerical model for sedimentation from highly-concentrated multi-sized suspensions , 1992 .

[65]  D. K. Pickard,et al.  Experimental implications of a Markov model for sedimentation , 1979 .

[66]  E. J. Hinch,et al.  Particle velocity fluctuations and hydrodynamic self-diffusion of sedimenting non-Brownian spheres , 1995 .

[67]  Y. Zimmels Theory of density separation of particulate systems , 1985 .

[68]  Elmer Melvin Tory BATCH AND CONTINUOUS THICKENING OF SLURRIES , 1961 .

[69]  Raimund Bürger,et al.  Existence and Stability for Mathematical Models of Sedimentation–Consolidation Processes in Several Space Dimensions☆ , 2001 .

[70]  Kai Höfler,et al.  Simulation and modeling of mono- and bidisperse suspensions , 2000 .

[71]  N. Risebro,et al.  On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients , 2003 .

[72]  Dimitri Gidaspow,et al.  Hydrodynamics of sedimentation of multisized particles , 1987 .

[73]  Kevin P. Galvin,et al.  Continuous differential sedimentation of a binary suspension , 1996 .

[74]  G. Batchelor,et al.  Structure formation in bidisperse sedimentation , 1986, Journal of Fluid Mechanics.

[75]  A. D. Fitt Mixed systems of conservation laws in industrial mathematical modelling motion , 1996 .

[76]  Roberto Natalini,et al.  Convergence of diffusive BGK approximations for nonlinear strongly parabolic systems , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[77]  Chi Tien,et al.  Batch sedimentation calculations — the effect of compressible sediment , 1992 .

[78]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[79]  R. Bürger,et al.  Central difference solutions of the kinematic model of settling of polydisperse suspensions and three-dimensional particle-scale simulations , 2001 .

[80]  Mario Ohlberger,et al.  A note on the uniqueness of entropy solutions of nonlinear degenerate parabolic equations , 2002, Journal of Mathematical Analysis and Applications.

[81]  N. Risebro ON THE UNIQUENESS AND STABILITY OF ENTROPY SOLUTIONS OF NONLINEAR DEGENERATE PARABOLIC EQUATIONS WITH ROUGH , 2000 .

[82]  D. K. Pickard,et al.  Extensions and refinements of a Markov model for sedimentation , 1982 .

[83]  Leonard G. Austin,et al.  Hindered settling and classification partition curves , 1992 .

[84]  Athanasios N. Papanicolaou,et al.  BATCH ANALYSIS OF SLURRIES IN ZONE SETTLING REGIME , 1997 .

[85]  E. Tadmor Approximate solutions of nonlinear conservation laws , 1998 .

[86]  Steinar Evje,et al.  Monotone Difference Approximations Of BV Solutions To Degenerate Convection-Diffusion Equations , 2000, SIAM J. Numer. Anal..

[87]  Robert H. Davis,et al.  Hindered settling function with no empirical parameters for polydisperse suspensions , 1994 .

[88]  R. L. Schiffman,et al.  A NOTE ON SEDIMENTATION AND CONSOLIDATION , 1985 .

[89]  Raimund Bürger,et al.  Applications of the phenomenological theory to several published experimental cases of sedimentation processes , 2000 .

[90]  Gui-Qiang G. Chen,et al.  Stability of Entropy Solutions to the Cauchy Problem for a Class of Nonlinear Hyperbolic-Parabolic Equations , 2001, SIAM J. Math. Anal..

[91]  Paul M. Chaikin,et al.  Long-range correlations in sedimentation , 1997 .

[92]  M. T. Kamel,et al.  On the divergence problem in calculating particle velocities in dilute dispersions of identical spheres II. Effect of a plane wall , 1988 .

[93]  M. T. Kamel,et al.  Sedimentation is container-size dependent , 1992 .

[94]  Michael Renardy,et al.  A degenerate parabolic-hyperbolic system modeling the spreading of surfactants , 1997 .

[95]  H. Kreiss,et al.  Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .

[96]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[97]  Lee A. Segel,et al.  Averaged Equations for Two-Phase Flows , 1971 .

[98]  R. Natalini,et al.  Diffusive BGK approximations for nonlinear multidimensional parabolic equations , 2000 .

[99]  Steinar Evje,et al.  On Strongly Degenerate Convection–Diffusion Problems Modeling Sedimentation–Consolidation Processes , 2000 .

[100]  W. Schneider,et al.  Kinematic-wave theory of sedimentation beneath inclined walls , 1982, Journal of Fluid Mechanics.

[101]  M. T. Kamel,et al.  On the divergence problem in calculating particle velocities in dilute dispersions of identical spheres II. Effect of a plane wall [Powder Technology, 55 (1988) 51–59] , 1997 .

[102]  H. Holden,et al.  ON UNIQUENESS AND EXISTENCE OF ENTROPY SOLUTIONS OF WEAKLY COUPLED SYSTEMS OF NONLINEAR DEGENERATE PARABOLIC EQUATIONS , 2003 .

[103]  Kerry A. Landman,et al.  Solid/liquid separation of flocculated suspensions , 1994 .

[104]  K. Karlsen,et al.  Operator spltting methods for systems of convection-diffusion equations: Nonlinear error mechanisms and correction strategies , 2001 .

[105]  K. Karlsen,et al.  On some upwind difference schemes for the phenomenological sedimentation-consolidation model , 2001 .

[106]  Raimund Bürger,et al.  Phenomenological model of filtration processes: 1. Cake formation and expression , 2001 .

[107]  Raimund Bürger,et al.  Model Equations and Instability Regions for the Sedimentation of Polydisperse Suspensions of Spheres , 2002 .

[108]  C. C. Wang,et al.  A new representation theorem for isotropic functions: An answer to Professor G. F. Smith's criticism of my papers on representations for isotropic functions , 1970 .

[109]  Florence Hubert,et al.  Global existence for hyperbolic-parabolic systems with large periodic initial data , 1998, Differential and Integral Equations.

[110]  K. Karlsen,et al.  Numerical solution of reservoir flow models based on large time step operator splitting algorithms , 2000 .

[111]  D. K. Pickard,et al.  A three‐parameter markov model for sedimentation , 1977 .