Cladosins A-E, hybrid polyketides from a deep-sea-derived fungus, Cladosporium sphaerospermum.

Five new fungal hybrid polyketides, cladosins A-D (1-4), that contain a novel linear 6(3)-enamino-8,10-dihydroxy-tetraketide (1 and 2) or 6-enamino-7(8)-en-10-ol (3 and 4) moiety, as well as the biogenetically related cladosin E (5), were isolated from the deep-sea-derived fungus Cladosporium sphaerospermum 2005-01-E3. Their structures (1-5) were elucidated through a combination of spectroscopic data, chemical conversion, and both Mosher's and Marfey's methods for stereochemical assignment. A plausible biogenetic pathway to 1-5 is proposed. Cladosin C (3) possesses mild anti-influenza A H1N1 virus activity.

[1]  B. Nay,et al.  Hirsutellones and beyond: figuring out the biological and synthetic logics toward chemical complexity in fungal PKS-NRPS compounds. , 2013, Natural product reports.

[2]  E. Schmidt,et al.  Two related pyrrolidinedione synthetase loci in Fusarium heterosporum ATCC 74349 produce divergent metabolites. , 2013, ACS chemical biology.

[3]  T. Zhu,et al.  Four New Chloro-Eremophilane Sesquiterpenes from an Antarctic Deep-Sea Derived Fungus, Penicillium sp. PR19N-1 , 2013, Marine drugs.

[4]  Meilin Zhu,et al.  Aspulvinones from a mangrove rhizosphere soil-derived fungus Aspergillus terreus Gwq-48 with anti-influenza A viral (H1N1) activity. , 2013, Bioorganic & medicinal chemistry letters.

[5]  S. Cai,et al.  Aromatic polyketides from a sponge-derived fungus Metarhizium anisopliae mxh-99 and their antitubercular activities , 2013, Archives of Pharmacal Research.

[6]  Karl G. Kempf,et al.  Synthesis of penicillenol C1 and of a bis-azide analogue for photoaffinity labeling. , 2013, The Journal of organic chemistry.

[7]  C. Hertweck,et al.  Molecular Diversity Sculpted by Fungal PKS–NRPS Hybrids , 2013, Chembiochem : a European journal of chemical biology.

[8]  T. Zhu,et al.  Penilactones A and B, two novel polyketides from Antarctic deep-sea derived fungus Penicillium crustosum PRB-2 , 2012 .

[9]  Wen Liu,et al.  Insights into pyrroindomycin biosynthesis reveal a uniform paradigm for tetramate/tetronate formation. , 2012, Journal of the American Chemical Society.

[10]  T. Sengoku,et al.  First total synthesis of epicoccarine A via O- to C-acyl rearrangement strategy. , 2012, Organic letters.

[11]  S. Cheevadhanarak,et al.  Biosynthesis of Xyrrolin, a New Cytotoxic Hybrid Polyketide/Non‐ribosomal Peptide Pyrroline with Anticancer Potential, in Xylaria sp. BCC 1067 , 2012, Chembiochem : a European journal of chemical biology.

[12]  M. Gütschow,et al.  HLE-inhibitory alkaloids with a polyketide skeleton from the marine-derived fungus Coniothyrium cereale. , 2011, Journal of natural products.

[13]  S. Cai,et al.  Two New Cyclic Pentapeptides from the Marine‐Derived Fungus Aspergillus versicolor , 2011 .

[14]  M. Schindler,et al.  Asymmetric total synthesis of the indole alkaloid cyclopiazonic acid and first structure–activity data , 2011 .

[15]  I. Abe,et al.  Cytotoxic tetramic acid derivative produced by a plant type-III polyketide synthase. , 2011, Journal of the American Chemical Society.

[16]  M. Moloney,et al.  Synthesis of and tautomerism in 3-acyltetramic acids. , 2011, The Journal of organic chemistry.

[17]  Wei Xu,et al.  Analysis of intact and dissected fungal polyketide synthase-nonribosomal peptide synthetase in vitro and in Saccharomyces cerevisiae. , 2010, Journal of the American Chemical Society.

[18]  S. Cai,et al.  Three New Indole‐Containing Diketopiperazine Alkaloids from a Deep‐Ocean Sediment Derived Fungus Penicillium griseofulvum , 2010 .

[19]  Xiang Xiao,et al.  New alkaloids and diterpenes from a deep ocean sediment derived fungus Penicillium sp. , 2009 .

[20]  R. Schobert,et al.  Tetramic and tetronic acids: an update on new derivatives and biological aspects. , 2008, Bioorganic & medicinal chemistry.

[21]  Weiming Zhu,et al.  Penicillenols from Penicillium sp. GQ-7, an endophytic fungus associated with Aegiceras corniculatum. , 2008, Chemical & pharmaceutical bulletin.

[22]  Shih-Hsiung Wu,et al.  Cytotoxic polyketides containing tetramic acid moieties isolated from the fungus Myceliophthora Thermophila: elucidation of the relationship between cytotoxicity and stereoconfiguration. , 2007, Chemistry.

[23]  Shu-wei Yang,et al.  Sch 213766, A Novel Chemokine Receptor CCR-5 Inhibitor from Chaetomium globosum , 2007, The Journal of Antibiotics.

[24]  Weiming Zhu,et al.  Trisorbicillinone A, a novel sorbicillin trimer, from a deep sea fungus, Phialocephala sp. FL30r , 2007 .

[25]  P. Salvadori,et al.  Vitamin E Metabolites: Synthesis of [D2]‐ and [D3]‐γ‐CEHC , 2006 .

[26]  P. Chacana,et al.  L-Tenuazonic Acid, a New Inhibitor of Paenibacillus Larvae , 2004 .

[27]  K. Bailey,et al.  The macrocidins: novel cyclic tetramic acids with herbicidal activity produced by Phoma macrostoma. , 2003, Journal of natural products.

[28]  K. Konno,et al.  Determination of absolute configuration of 1,3-diols by the modified Mosher's method using their di-MTPA esters. , 2002, Chirality.

[29]  Jung,et al.  The First Low Molecular Weight Antibiotic from Lactic Acid Bacteria: Reutericyclin, a New Tetramic Acid. , 2000, Angewandte Chemie.

[30]  Y. Ye,et al.  Melophlins A and B, Novel Tetramic Acids Reversing the Phenotype of ras-Transformed Cells, from the Marine Sponge Melophlus sarassinorum , 2000 .

[31]  P. Bhogal,et al.  Structural similarities between 6-methylsalicylic acid synthase from Penicillium patulum and vertebrate type I fatty acid synthase: evidence from thiol modification studies. , 1996, Biochemistry.

[32]  B. J. Royles NATURALLY OCCURRING TETRAMIC ACIDS : STRUCTURE, ISOLATION, AND SYNTHESIS , 1995 .

[33]  S. Rychnovsky,et al.  Chair and twist-boat conformations of 1,3-dioxanes: limitations of molecular mechanics force fields , 1993 .

[34]  H. Kikuzaki,et al.  Gingerdiol related compounds from the rhizomes of Zingiber officinale , 1992 .

[35]  Willi E. Oberhänsli,et al.  Dysidin, ein neuartiger, chlorhaltiger Naturstoff aus dem Schwamm Dysidea herbacea† , 1977 .

[36]  K. Rinehart,et al.  X-ray structure of tirandamycic acid p-bromophenacyl ester. Complete stereochemical assignments of tirandamycin and streptolydigin. , 1973, Journal of the American Chemical Society.

[37]  S. Gatenbeck,et al.  Microbial Production of Tenuazonic Acid Analogues , 1973, Antimicrobial Agents and Chemotherapy.

[38]  D. Wilkins,et al.  The isolation and structure of two new indole derivatives from Penicillium cyclopium westling. , 1970, Tetrahedron.

[39]  C. Holzapfel The isolation and structure of cyclopiazonic acid, a toxic metabolite of Penicillium cyclopium Westling. , 1968, Tetrahedron.

[40]  K. Rinehart,et al.  Streptolydigin. III. Chromophore and Structure , 1963 .

[41]  C. N. Gordon,et al.  THE BIOLOGICAL ACTIVITY OF TENUAZONIC ACID. , 1963, Biochemistry.

[42]  R. H. Holm,et al.  Nuclear Magnetic Resonance Studies of Keto-enol Equilibria. III. α,β-Unsaturated-β-Ketoamines , 1962 .