On the effect of cosmological inflow on turbulence and instability in galactic discs

We analyse the evolution of turbulence and gravitational instability of a galactic disc in a quasi-steady state governed by cosmological inflow. We focus on the possibility that the coupling between the in-streaming gas and the disc is maximal, e.g. via dense clumps, and ask whether the streams could be the driver of turbulence in an unstable disc with a Toomre parameter Q ∼ 1. Our fiducial model assumes an efficiency of ∼0.5 per dynamical time for the decay of turbulence energy, and ∼0.02 for each of the processes that depletes the disc gas, i.e. star formation, outflow and inflow within the disc into a central bulge. In this case, the in-streaming drives a ratio of turbulent to rotation velocity σ/V ∼ 0.2–0.3, which at z ∼ 2 induces an instability with Q ∼ 1, both as observed. However, in conflict with observations, this model predicts that σ/V remains constant with time, independent of the cosmological accretion rate, because mass and turbulence have the same external source. Such strongly coupled cosmological inflow tends to stabilize the disc at low z, with Q ∼ a few, which may be consistent with observations. The instability could instead be maintained for longer, with a properly declining σ/V, if it is self-regulated to oscillations about Q ≈ 1 by a duty cycle for disc depletion. However, the ‘off’ phases of this duty cycle become long at low z, which may be hard to reconcile with observations. Alternatively, the coupling between the in-streaming gas and the disc may weaken in time, reflecting an evolving nature of the accretion. If, instead, that coupling is weak at all times, the likely energy source for self-regulated stirring up of the turbulence is the inflow within the disc down the potential gradient (studied in a companion paper).

[1]  Peter Wurz,et al.  HELIOSPHERIC NEUTRAL ATOM SPECTRA BETWEEN 0.01 AND 6 keV FROM IBEX , 2012 .

[2]  D. Elbaz,et al.  DISSECTING THE STELLAR-MASS–SFR CORRELATION IN z = 1 STAR-FORMING DISK GALAXIES , 2012, 1206.1704.

[3]  D. Hunter,et al.  H i POWER SPECTRA AND THE TURBULENT INTERSTELLAR MEDIUM OF DWARF IRREGULAR GALAXIES , 2012, 1205.3793.

[4]  G. Brammer,et al.  THE STAR FORMATION MASS SEQUENCE OUT TO z = 2.5 , 2012, 1205.0547.

[5]  O. University,et al.  PROPERTIES OF BULGELESS DISK GALAXIES. II. STAR FORMATION AS A FUNCTION OF CIRCULAR VELOCITY , 2012, 1204.1555.

[6]  M. Krumholz,et al.  Evolving gravitationally unstable disks over cosmic time: implications for thick disk formation , 2011, 1112.1410.

[7]  A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSHIFT DISKS, AND STARBURSTS , 2011, 1109.4150.

[8]  A. Dutton,et al.  The angular momentum of disc galaxies: implications for gas accretion, outflows, and dynamical friction , 2011, 1108.0663.

[9]  A. Dekel,et al.  Evolution of violent gravitational disc instability in galaxies: late stabilization by transition from gas to stellar dominance , 2011, 1110.2412.

[10]  Reinhard Genzel,et al.  THE zCOSMOS–SINFONI PROJECT. I. SAMPLE SELECTION AND NATURAL-SEEING OBSERVATIONS , 2011, 1109.5952.

[11]  M. Bershady,et al.  THE DISKMASS SURVEY. IV. THE DARK-MATTER-DOMINATED GALAXY UGC 463 , 2011, 1108.2946.

[12]  G. Cresci,et al.  HOW WELL CAN WE MEASURE THE INTRINSIC VELOCITY DISPERSION OF DISTANT DISK GALAXIES? , 2011, 1108.0285.

[13]  K. Wood,et al.  THE STABILITY OF LOW SURFACE BRIGHTNESS DISKS BASED ON MULTI-WAVELENGTH MODELING , 2011, 1107.5957.

[14]  A. Dekel,et al.  Rotational support of giant clumps in high-z disc galaxies , 2011, 1106.5587.

[15]  K. Finlator,et al.  Galaxy Evolution in Cosmological Simulations with Outflows II: Metallicities and Gas Fractions , 2011, 1104.3156.

[16]  K. Finlator,et al.  Galaxy evolution in cosmological simulations with outflows ― I. Stellar masses and star formation rates , 2011, 1103.3528.

[17]  J. Schaye,et al.  The drop in the cosmic star formation rate below redshift 2 is caused by a change in the mode of gas accretion and by AGN feedback , 2011, 1102.3912.

[18]  E. Ostriker,et al.  MAXIMALLY STAR-FORMING GALACTIC DISKS. I. STARBURST REGULATION VIA FEEDBACK-DRIVEN TURBULENCE , 2011, 1102.1446.

[19]  P. Hopkins,et al.  Self-regulated star formation in galaxies via momentum input from massive stars , 2011, 1101.4940.

[20]  K. Freeman,et al.  Galaxy Disks , 2011, 1101.1771.

[21]  G. Zamorani,et al.  THE SINS SURVEY OF z ∼ 2 GALAXY KINEMATICS: PROPERTIES OF THE GIANT STAR-FORMING CLUMPS* , 2010 .

[22]  Andreas Burkert,et al.  SHORT-LIVED STAR-FORMING GIANT CLUMPS IN COSMOLOGICAL SIMULATIONS OF z ≈ 2 DISKS , 2010, 1011.0433.

[23]  R. Teyssier,et al.  ISM properties in hydrodynamic galaxy simulations: turbulence cascades, cloud formation, role of gravity and feedback , 2010, 1007.2566.

[24]  A. Sternberg,et al.  THE GROWTH OF DARK MATTER HALOS: EVIDENCE FOR SIGNIFICANT SMOOTH ACCRETION , 2010, 1005.4058.

[25]  P. Kruit Structure, Mass, and Stability of Galactic Disks , 2010, 1004.4747.

[26]  B. Weiner,et al.  A study of the gas–star formation relation over cosmic time , 2010, 1003.5180.

[27]  M. Krumholz,et al.  ON THE DYNAMICS AND EVOLUTION OF GRAVITATIONAL INSTABILITY-DOMINATED DISKS , 2010, 1003.4513.

[28]  D. Elbaz,et al.  DIFFERENT STAR FORMATION LAWS FOR DISKS VERSUS STARBURSTS AT LOW AND HIGH REDSHIFTS , 2010, 1003.3889.

[29]  C. Steidel,et al.  THE STRUCTURE AND KINEMATICS OF THE CIRCUMGALACTIC MEDIUM FROM FAR-ULTRAVIOLET SPECTRA OF z ≃ 2–3 GALAXIES , 2010, 1003.0679.

[30]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[31]  Princeton University.,et al.  A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS–HALO MASS RELATION FOR 0 < z < 4 , 2010, 1001.0015.

[32]  G. Cresci,et al.  THE IMPACT OF COLD GAS ACCRETION ABOVE A MASS FLOOR ON GALAXY SCALING RELATIONS , 2009, 0912.1858.

[33]  R. Klessen,et al.  Accretion-driven turbulence as universal process: galaxies, molecular clouds, and protostellar disks , 2009, 0912.0288.

[34]  S. White,et al.  How do galaxies populate dark matter haloes , 2009, 0909.4305.

[35]  G. Cresci,et al.  HIGH-REDSHIFT STAR-FORMING GALAXIES: ANGULAR MOMENTUM AND BARYON FRACTION, TURBULENT PRESSURE EFFECTS, AND THE ORIGIN OF TURBULENCE , 2009, 0907.4777.

[36]  A. Dekel,et al.  High-redshift clumpy discs and bulges in cosmological simulations , 2009, 0907.3271.

[37]  C. Balkowski,et al.  Evidence for strong dynamical evolution in disc galaxies through the last 11 Gyr. GHASP VIII – a local reference sample of rotating disc galaxies for high‐redshift studies , 2009, 0904.3891.

[38]  K. Freeman,et al.  Galaxies and their Masks , 2010 .

[39]  A. Dekel,et al.  On the origin of the galaxy star‐formation‐rate sequence: evolution and scatter , 2009, 0912.2169.

[40]  B. Elmegreen,et al.  ACCRETION-DRIVEN TURBULENCE AND THE TRANSITION TO GLOBAL INSTABILITY IN YOUNG GALAXY DISKS , 2009, 0912.0996.

[41]  Kyle R. Stewart,et al.  MERGERS AND BULGE FORMATION IN ΛCDM: WHICH MERGERS MATTER? , 2009, 0906.5357.

[42]  R. Teyssier,et al.  MORPHOLOGICAL QUENCHING OF STAR FORMATION: MAKING EARLY-TYPE GALAXIES RED , 2009, 0905.4669.

[43]  L. Hernquist,et al.  SEEDING THE FORMATION OF COLD GASEOUS CLOUDS IN MILKY WAY-SIZE HALOS , 2009, 0905.2186.

[44]  H. Rix,et al.  HISTORY OF GALAXY INTERACTIONS AND THEIR IMPACT ON STAR FORMATION OVER THE LAST 7 Gyr FROM GEMS , 2009, 0903.3700.

[45]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[46]  P. Buschkamp,et al.  THE SINS SURVEY: MODELING THE DYNAMICS OF z ∼ 2 GALAXIES AND THE HIGH-z TULLY–FISHER RELATION , 2009, 0902.4701.

[47]  L. Chemin,et al.  PHYSICAL CONDITIONS IN THE INTERSTELLAR MEDIUM OF INTENSELY STAR-FORMING GALAXIES AT REDSHIFT∼2 , 2009, 0902.2784.

[48]  Daniel Ceverino,et al.  FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS , 2009, 0901.2458.

[49]  A. Dutton,et al.  The impact of feedback on disc galaxy scaling relations , 2008, 0810.4963.

[50]  R. Teyssier,et al.  Large-scale galactic turbulence: can self-gravity drive the observed H i velocity dispersions? , 2008, 0810.1741.

[51]  R. Davé,et al.  Galaxies in a simulated ΛCDM Universe – I. Cold mode and hot cores , 2008, 0809.1430.

[52]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[53]  G. Bryan,et al.  DEPENDENCE OF INTERSTELLAR TURBULENT PRESSURE ON SUPERNOVA RATE , 2008, 0811.3747.

[54]  B. Madore,et al.  THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY , 2008, 0810.2556.

[55]  C. Breuck,et al.  Evidence for powerful AGN winds at high redshift: dynamics of galactic outflows in radio galaxies during the “Quasar Era” , 2008, 0809.5171.

[56]  G. Cresci,et al.  ACCEPTED FOR PUBLICATION IN APJ Preprint typeset using LATEX style emulateapj v. 11/26/04 MERGERS AND MASS ACCRETION RATES IN GALAXY ASSEMBLY: THE MILLENNIUM SIMULATION COMPARED TO OBSERVATIONS OF z ≈ 2 GALAXIES , 2022 .

[57]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[58]  A. Dekel,et al.  Merger rates of dark matter haloes , 2008, 0802.0198.

[59]  C. Frenk,et al.  Bulges versus discs: the evolution of angular momentum in cosmological simulations of galaxy formation , 2007, 0710.2901.

[60]  D. Breitschwerdt,et al.  The Generation and Dissipation of Interstellar Turbulence: Results from Large-Scale High-Resolution Simulations , 2007, 0707.1740.

[61]  A. Dekel,et al.  Gravitational quenching in massive galaxies and clusters by clumpy accretion , 2007, 0707.1214.

[62]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[63]  R. Davé,et al.  The origin of the galaxy mass-metallicity relation and implications for galactic outflows , 2007, 0704.3100.

[64]  S. Khochfar,et al.  Adding Environmental Gas Physics to the Semianalytic Method for Galaxy Formation: Gravitational Heating , 2007, 0704.2418.

[65]  A. Dekel,et al.  Natural downsizing in hierarchical galaxy formation , 2006, astro-ph/0605045.

[66]  S. Courteau,et al.  A Revised Model for the Formation of Disk Galaxies: Low Spin and Dark Halo Expansion , 2006, astro-ph/0604553.

[67]  R. Abuter,et al.  SINFONI Integral Field Spectroscopy of z ~ 2 UV-selected Galaxies: Rotation Curves and Dynamical Evolution , 2006, astro-ph/0603559.

[68]  E. Quataert,et al.  On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds , 2004, astro-ph/0406070.

[69]  Munich,et al.  The Supernova Rate-Velocity Dispersion Relation in the Interstellar Medium , 2005, astro-ph/0506339.

[70]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[71]  J. Bullock,et al.  Multiphase galaxy formation: high-velocity clouds and the missing baryon problem , 2004, astro-ph/0406632.

[72]  D. O. Astronomy,et al.  Interstellar Turbulence I: Observations and Processes , 2004, astro-ph/0404451.

[73]  C. Steidel,et al.  The Kinematics of Morphologically Selected z ~ 2 Galaxies in the GOODS-North Field , 2004, astro-ph/0404235.

[74]  P. Yoachim,et al.  The Formation of Dust Lanes: Implications for Galaxy Evolution , 2004, astro-ph/0402472.

[75]  Gas physics, disk fragmentation, and bulge formation in young galaxies , 2003, astro-ph/0312139.

[76]  R. Bottema Simulations of normal spiral galaxies , 2003, astro-ph/0303257.

[77]  Y. Birnboim,et al.  Virial shocks in galactic haloes , 2003, astro-ph/0302161.

[78]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[79]  Gravity-driven turbulence in galactic disks , 2002, astro-ph/0207641.

[80]  A. Dekel,et al.  Towards a resolution of the galactic spin crisis: mergers, feedback and spin segregation , 2002, astro-ph/0201187.

[81]  D. Balsara,et al.  Turbulence Driven by Supernova Explosions in a Radiatively-Cooling Magnetized Interstellar Medium , 2001 .

[82]  Robert C. Kennicutt,et al.  Star Formation Thresholds in Galactic Disks , 2001 .

[83]  Charles F. Gammie,et al.  Nonlinear Outcome of Gravitational Instability in Cooling, Gaseous Disks , 2001, astro-ph/0101501.

[84]  A. Dekel,et al.  A Universal Angular Momentum Profile for Galactic Halos , 2000, astro-ph/0011001.

[85]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[86]  A. Ferrara,et al.  Starburst-driven Mass Loss from Dwarf Galaxies: Efficiency and Metal Ejection , 1998, astro-ph/9801237.

[87]  Andreas Burkert,et al.  Kinetic Energy Decay Rates of Supersonic and Super-Alfvénic Turbulence in Star-Forming Clouds , 1998 .

[88]  Shude Mao,et al.  The formation of galactic discs , 1997 .

[89]  M. Steinmetz,et al.  Energy Input and Mass Redistribution by Supernovae in the Interstellar Medium , 1997, astro-ph/9706175.

[90]  J. Silk Feedback, Disk Self-Regulation, and Galaxy Formation , 1996, astro-ph/9612117.

[91]  R. Kennicutt The Star Formation Law in Galactic Disks , 1989 .

[92]  E. Athanassoula,et al.  Bi-symmetric instabilities of the Kuz'min/Toomre disc , 1986 .

[93]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[94]  F. Hohl,et al.  Numerical experiments with a disk of stars , 1971 .

[95]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .