DNA double strand break quantification in skin biopsies.

BACKGROUND AND PURPOSE Following induction of double strand breaks the histone H2AX is rapidly phosphorylated at regions flanking the breaks resulting in nuclear gamma H2AX foci. The purpose of this study was to use this endogenous signalling system to quantify the in vivo response to radiation in normal tissue. PATIENTS AND METHODS Skin biopsies were taken from prostate cancer patients undergoing radiotherapy with a curative intent. Biopsies were taken at locations corresponding to 5 different doses in the range below 1.1 Gy per fraction. Biopsies were taken from patients 30 min following the first fraction and then once again following the fraction given after the first weekend break in the treatment course. The DNA double strand breaks were visualised as gamma H2AX foci using immunohistochemistry. Images were acquired using a CCD-camera and a fluorescence microscope and the gamma H2AX foci were quantified using digital image analysis including the basic procedures of top-hat transformation, threshold setting and labelling. RESULTS Repeated assessments of the biopsies showed a high reproducibility in quantifying the number of foci per DNA area of the nucleated cells in epidermis. The reproducibility was equally good for the two biopsy occasions. A linear dose response was observed for the epidermis in the dose region 0-1 Gy. CONCLUSIONS We have established a method to measure the relative amount of DNA double strand breaks by detecting gamma H2AX foci in patients exposed to radiotherapy. The method provides a tool to study induction and repair of DNA double strand breaks and has the potential to predict individual radiosensitivity.

[1]  Kai Rothkamm,et al.  A Double-Strand Break Repair Defect in ATM-Deficient Cells Contributes to Radiosensitivity , 2004, Cancer Research.

[2]  P. Olive,et al.  Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X‐rays , 2003, International journal of radiation biology.

[3]  P. Jeggo,et al.  ATM and DNA-PK Function Redundantly to Phosphorylate H2AX after Exposure to Ionizing Radiation , 2004, Cancer Research.

[4]  E. Rogakou,et al.  Megabase Chromatin Domains Involved in DNA Double-Strand Breaks in Vivo , 1999, The Journal of cell biology.

[5]  F. Alt,et al.  Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Kai Rothkamm,et al.  Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  E. Rogakou,et al.  Quantitative Detection of 125IdU-Induced DNA Double-Strand Breaks with γ-H2AX Antibody , 2002 .

[8]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[9]  S. Jackson,et al.  Sensing and repairing DNA double-strand breaks. , 2002, Carcinogenesis.

[10]  E. Rogakou,et al.  DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139* , 1998, The Journal of Biological Chemistry.

[11]  P. Olive,et al.  Phosphorylation of histone H2AX as a measure of radiosensitivity. , 2004, International journal of radiation oncology, biology, physics.

[12]  Michel C. Nussenzweig,et al.  Genomic Instability in Mice Lacking Histone H2AX , 2002, Science.

[13]  P Lambin,et al.  Low-dose hypersensitivity: current status and possible mechanisms. , 2001, International journal of radiation oncology, biology, physics.

[14]  Stephen J Kron,et al.  Histone H2AX Phosphorylation as a Predictor of Radiosensitivity and Target for Radiotherapy* , 2004, Journal of Biological Chemistry.