Effects of lithium doping on hydrogen storage properties of heat welded random CNT network structures

[1]  G. Ramis,et al.  Hydrogen storage over metal-doped activated carbon , 2015 .

[2]  G. Seifert,et al.  Hydrogen adsorption by perforated graphene , 2015 .

[3]  A. To,et al.  Hydrogen storage in heat welded random CNT network structures , 2015 .

[4]  H. Akbarzadeh,et al.  A molecular dynamics investigation of hydrogen adsorption on Ag–Cu bimetallic nanoclusters supported on a bundle of single-walled carbon nanotubes , 2014 .

[5]  S. Taheri,et al.  Grand canonical Monte Carlo simulation of hydrogen physisorption in Li- and K-doped single-walled silicon carbide nanotube , 2014, International Nano Letters.

[6]  P. Shen,et al.  One-pot synthesis of Pd nanoparticles on ultrahigh surface area 3D porous carbon as hydrogen storage materials , 2014 .

[7]  G. Froudakis,et al.  Designing novel nanoporous architectures of carbon nanotubes for hydrogen storage , 2014 .

[8]  A. Magalhães,et al.  A study of interaction potentials for H2 adsorption in Single Walled Nano Tubes: a possible way to more realistic predictions , 2014, Journal of Molecular Modeling.

[9]  A. To,et al.  Tensile behavior of heat welded CNT network structures , 2014 .

[10]  E. Poirier Ultimate H2 and CH4 adsorption in slit-like carbon nanopores at 298 K: a molecular dynamics study , 2014 .

[11]  Anna Maria Almerico,et al.  Molecular dynamics, dynamic site mapping, and highthroughput virtual screening on leptin and the Ob receptor as anti-obesity target , 2014, Journal of Molecular Modeling.

[12]  E. Goharshadi,et al.  Hydrogen storage on silicon, carbon, and silicon carbide nanotubes: A combined quantum mechanics and grand canonical Monte Carlo simulation study , 2014 .

[13]  Reinier L. C. Akkermans,et al.  Monte Carlo methods in Materials Studio , 2013 .

[14]  Shiqi Zhou,et al.  Study of H 2 physical adsorption in single-walled carbon nanotube array , 2013 .

[15]  T. Fang,et al.  Molecular dynamics simulations of hydrogen storage capacity of few-layer graphene , 2013, Journal of Molecular Modeling.

[16]  A. To,et al.  A stochastic algorithm for modeling heat welded random carbon nanotube network , 2013 .

[17]  Te-Hua Fang,et al.  Effects of pressure, temperature, and geometric structure of pillared graphene on hydrogen storage capacity , 2012 .

[18]  A. To,et al.  Heat welding of non-orthogonal X-junction of single-walled carbon nanotubes , 2012 .

[19]  R. Oriňaková,et al.  Recent applications of carbon nanotubes in hydrogen production and storage , 2011 .

[20]  E. A. Müller,et al.  Molecular Simulation of Hydrogen Physisorption and Chemisorption in Nanoporous Carbon Structures , 2011 .

[21]  G. Froudakis Hydrogen storage in nanotubes & nanostructures , 2011 .

[22]  G. Seifert,et al.  Packings of Carbon Nanotubes – New Materials for Hydrogen Storage , 2011, Advanced materials.

[23]  Boris I. Yakobson,et al.  Hydrogen Storage Capacity of Carbon-Foams: Grand Canonical Monte Carlo Simulations , 2011 .

[24]  G. Froudakis,et al.  Porous nanotube network: a novel 3-D nanostructured material with enhanced hydrogen storage capacity. , 2011, Chemical communications.

[25]  Soojin Park,et al.  Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes , 2010 .

[26]  G. Froudakis,et al.  Li-Doped Pillared Graphene Oxide: A Graphene-Based Nanostructured Material for Hydrogen Storage , 2010 .

[27]  Liang-Feng Huang,et al.  Hydrogen storage in Li-doped charged single-walled carbon nanotubes , 2010 .

[28]  Jinrong Cheng,et al.  Computer simulation of hydrogen physisorption in a Li-doped single walled carbon nanotube array , 2010 .

[29]  Frank Hoffmann,et al.  Preferred hydrogen adsorption sites in various MOFs--a comparative computational study. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[30]  Jinrong Cheng,et al.  Monte Carlo simulation of hydrogen physisorption in K-doped single walled carbon nanotube array , 2009 .

[31]  T. Nejat Veziroglu,et al.  Storage of hydrogen in nanostructured carbon materials , 2009 .

[32]  J. Long,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[33]  Nigel P. Brandon,et al.  Hydrogen and fuel cells: Towards a sustainable energy future , 2008 .

[34]  Emmanuel Tylianakis,et al.  Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. , 2008, Nano letters.

[35]  David J. Collins,et al.  Hydrogen storage in metal–organic frameworks , 2007 .

[36]  Emmanuel Tylianakis,et al.  Carbon nanoscrolls: a promising material for hydrogen storage. , 2007, Nano letters.

[37]  Xiaojun Wu,et al.  Hydrogen Storage in Pillared Li-Dispersed Boron Carbide Nanotubes , 2007, cond-mat/0703519.

[38]  M. Terrones,et al.  Covalent 2D and 3D networks from 1D nanostructures: designing new materials. , 2007, Nano letters.

[39]  K. Thomas,et al.  Hydrogen adsorption and storage on porous materials , 2007 .

[40]  C. Park,et al.  Hydrogen storage on Li-doped single-walled carbon nanotubes: Computer simulation using the density functional theory , 2007 .

[41]  P. T. Moseley,et al.  Hydrogen storage by carbon materials , 2006 .

[42]  N. Hu,et al.  Monte Carlo simulations of hydrogen adsorption in alkali-doped single-walled carbon nanotubes. , 2005, The Journal of chemical physics.

[43]  T. Veziroglu,et al.  The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet , 2005 .

[44]  M. Fichtner Nanotechnological Aspects in Materials for Hydrogen Storage , 2005 .

[45]  Rongshun Wang,et al.  The role of lithium in hydrogen storage in aromatic carbon materials , 2004 .

[46]  Xin Xu,et al.  New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation. , 2004, Physical review letters.

[47]  R. O. Jones,et al.  Smallest carbon nanotube is 3 a in diameter. , 2004, Physical review letters.

[48]  Andreas Züttel,et al.  Hydrogen storage methods , 2004, Naturwissenschaften.

[49]  A. Züttel Materials for hydrogen storage , 2003 .

[50]  Andreas Züttel,et al.  Hydrogen storage in carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[51]  Ibrahim Dincer,et al.  Technical, environmental and exergetic aspects of hydrogen energy systems , 2002 .

[52]  F. Darkrim,et al.  Review of hydrogen storage by adsorption in carbon nanotubes , 2002 .

[53]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[54]  G. Froudakis Why Alkali-Metal-Doped Carbon Nanotubes Possess High Hydrogen Uptake , 2001 .

[55]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[56]  Cheng,et al.  Hydrogen storage in single-walled carbon nanotubes at room temperature , 1999, Science.

[57]  Chen,et al.  High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures , 1999, Science.

[58]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[59]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[60]  G. Nicoletti,et al.  The hydrogen option for energy: A review of technical, environmental and economic aspects , 1995 .

[61]  V. Buch,et al.  Path integral simulations of mixed para‐D2 and ortho‐D2 clusters: The orientational effects , 1994 .

[62]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[63]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[64]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[65]  D. Gournis,et al.  Hydrogen Storage in Graphene-Based Materials: Efforts Towards Enhanced Hydrogen Absorption , 2013 .

[66]  P. Pfeifer,et al.  Numerical estimation of hydrogen storage limits in carbon-based nanospaces , 2010 .

[67]  G. Seifert,et al.  Hydrogen sieving and storage in fullerene intercalated graphite. , 2007, Nano letters.