Zero Mach number limit of the compressible Hall-magnetohydrodynamic equations

In this paper, we study the low Mach number limit of the compressible Hall-magnetohydrodynamic equations. It is justified rigorously that, for the well-prepared initial data, the classical solutions of the compressible Hall-magnetohydrodynamic equations converge to that of the incompressible Hall-magnetohydrodynamic equations as the Mach number tends to zero.

[1]  Dongho Chae,et al.  Singularity formation for the incompressible Hall-MHD equations without resistivity , 2013, 1312.5519.

[2]  Fucai Li,et al.  Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations , 2011, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[3]  Xianpeng Hu,et al.  Global Solutions to the Three-Dimensional Full Compressible Magnetohydrodynamic Flows , 2008, 0804.4510.

[4]  X. Moussas,et al.  A review of magneto-vorticity induction in Hall-MHD plasmas , 2001 .

[5]  Pierre Degond,et al.  Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system , 2011 .

[6]  Song Jiang,et al.  Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations , 2011, 1105.0729.

[7]  Song Jiang,et al.  Incompressible Limit of the Compressible Magnetohydrodynamic Equations with Periodic Boundary Conditions , 2009, 1010.5296.

[8]  Pierre Degond,et al.  Well-posedness for Hall-magnetohydrodynamics , 2012, 1212.3919.

[9]  E. Feireisl,et al.  Dissipative solutions and the incompressible inviscid limits of the compressible magnetohydrodynamic system inunbounded domains , 2013 .

[10]  Rainer Grauer,et al.  Axisymmetric Flows in Hall-MHD: A Tendency Towards Finite-Time Singularity Formation , 2005 .

[11]  Xiaoli Li,et al.  LOCAL STRONG SOLUTION TO THE COMPRESSIBLE MAGNETOHYDRODYNAMIC FLOW WITH LARGE DATA , 2011, 1108.5476.

[12]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[13]  A. I. Vol'pert,et al.  ON THE CAUCHY PROBLEM FOR COMPOSITE SYSTEMS OF NONLINEAR DIFFERENTIAL EQUATIONS , 1972 .

[14]  Dongho Chae,et al.  On the temporal decay for the Hall-magnetohydrodynamic equations , 2013, 1302.4601.

[15]  Low Mach number limit of the full compressible Navier–Stokes–Maxwell system , 2014 .

[16]  Ahmed Alsaedi,et al.  On strong solutions to the compressible Hall-magnetohydrodynamic system , 2015 .

[17]  Gen Nakamura,et al.  Well-posedness for the axisymmetric incompressible viscous Hall-magnetohydrodynamic equations , 2013, Appl. Math. Lett..

[18]  D. Hoff,et al.  Global Low-Energy Weak Solutions of the Equations of Three-Dimensional Compressible Magnetohydrodynamics , 2012 .

[19]  Yeping Li Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations , 2012 .

[20]  Qiangchang Ju,et al.  Incompressible Limit of the Compressible Magnetohydrodynamic Equations with Vanishing Viscosity Coefficients , 2010, SIAM J. Math. Anal..

[21]  G. Nakamura,et al.  Regularity criteria for the incompressible Hall-magnetohydrodynamic equations , 2014 .

[22]  Song Jiang,et al.  Global existence and the low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain with perfectly conducting boundary , 2013 .

[23]  Dongho Chae,et al.  On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics , 2013, 1305.4681.

[24]  Eric Dumas,et al.  On the Weak Solutions to the Maxwell–Landau–Lifshitz Equations and to the Hall–Magneto–Hydrodynamic Equations , 2013, Communications in Mathematical Physics.

[25]  Dehua Wang,et al.  Low Mach Number Limit of Viscous Compressible Magnetohydrodynamic Flows , 2009, SIAM J. Math. Anal..