Diverse response of global terrestrial vegetation to astronomical forcing and CO_2 during the MIS-11 and MIS-13 interglacials

[1]  A. Berger,et al.  Insolation triggered abrupt weakening of Atlantic circulation at the end of interglacials , 2021, Science.

[2]  N. Marwan,et al.  Recurring types of variability and transitions in the ∼620 kyr record of climate change from the Chew Bahir basin, southern Ethiopia , 2021, Quaternary Science Reviews.

[3]  M. Toohey,et al.  Holocene vegetation transitions and their climatic drivers in MPI-ESM1.2 , 2021, Climate of the Past.

[4]  R. Trigo,et al.  Combination of insolation and ice-sheet forcing drive enhanced humidity in northern subtropical regions during MIS 13 , 2020 .

[5]  A. Berger,et al.  Hemisphere differences in response of sea surface temperature and sea ice to precession and obliquity , 2020 .

[6]  H. Birks,et al.  Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years , 2020, Science Advances.

[7]  G. Ramstein,et al.  Impacts of extremely asymmetrical polar ice sheets on the East Asian summer monsoon during the MIS-13 interglacial , 2019 .

[8]  Weijian Zhou,et al.  Diverse manifestations of the mid-Pleistocene climate transition , 2019, Nature Communications.

[9]  G. Manzi,et al.  The MIS 13 interglacial at Ceprano, Italy, in the context of Middle Pleistocene vegetation changes in southern Europe , 2018, Quaternary Science Reviews.

[10]  Tannecia S. Stephenson,et al.  Chapter 3: Impacts of 1.5ºC global warming on natural and human systems , 2018 .

[11]  R. Trigo,et al.  Unraveling the forcings controlling the vegetation and climate of the best orbital analogues for the present interglacial in SW Europe , 2018, Climate Dynamics.

[12]  M. Kuno,et al.  In Response. , 2018, Anesthesia and analgesia.

[13]  R. Trigo,et al.  The complexity of millennial-scale variability in southwestern Europe during MIS 11 , 2016, Quaternary Research.

[14]  J. Polanco-Martínez,et al.  Tropically-driven climate shifts in southwestern Europe during MIS 19, a low eccentricity interglacial , 2016 .

[15]  R. Stachowicz‐Rybka Vegetation of the Ferdynandovian interglacial (MIS 13–15) based on plant macrofossils from a new profile of the stratotype site , 2015 .

[16]  A. Berger,et al.  Interglacial analogues of the Holocene and its natural near future , 2015 .

[17]  M. Schulz,et al.  Intra-interglacial climate variability from Marine Isotope Stage 15 to the Holocene , 2015 .

[18]  J. Brigham‐Grette,et al.  A GCM comparison of Pleistocene super-interglacial periods in relation to Lake El'gygytgyn, NE Arctic Russia , 2015 .

[19]  S. Rahmstorf,et al.  Sea-level rise due to polar ice-sheet mass loss during past warm periods , 2015, Science.

[20]  J. Martín-Fernández,et al.  Vegetation patterns in the Southern Apennines (Italy) during MIS 13: Deciphering pollen variability along a NW-SE transect , 2015 .

[21]  R. Wilkinson,et al.  Global sensitivity analysis of the climate–vegetation system to astronomical forcing: an emulator-based approach , 2014 .

[22]  V. Brovkin,et al.  The climate and vegetation of Marine Isotope Stage 11 - Model results and proxy-based reconstructions at global and regional scale , 2014 .

[23]  J. Brigham‐Grette,et al.  A pollen-based biome reconstruction over the last 3.562 million years in the Far East Russian Arctic - new insights into climate-vegetation relationships at the regional scale , 2013 .

[24]  A. Ganopolski,et al.  On the effect of orbital forcing on mid-Pliocene climate, vegetation and ice sheets , 2013 .

[25]  J. L. Cullen,et al.  Marine Isotope Stage 11 (Mis 11): Analog for Holocene and Future Climate? , 2013 .

[26]  J. Brigham‐Grette,et al.  Detailed insight into Arctic climatic variability during MIS 11c at Lake El'gygytgyn, NE Russia , 2012 .

[27]  M. Jovanović,et al.  Loess in the Vojvodina region (Northern Serbia): an essential link between European and Asian Pleistocene environments , 2012, Netherlands Journal of Geosciences - Geologie en Mijnbouw.

[28]  M. Raymo,et al.  Collapse of polar ice sheets during the stage 11 interglacial , 2012, Nature.

[29]  A. Berger,et al.  Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years , 2012, Climate Dynamics.

[30]  H. Birks,et al.  The pace of Holocene vegetation change : testing for synchronous developments , 2011 .

[31]  Benoît Tartinville,et al.  Description of the Earth system model of intermediate complexity LOVECLIM version 1.2 , 2010 .

[32]  E. Wolff,et al.  Interglacial and glacial variability from the last 800 ka in marine, ice and terrestrial archives , 2010 .

[33]  Wolfram M Kürschner,et al.  Milankovitch-scale palynological turnover across the Triassic–Jurassic transition at St. Audrie's Bay, SW UK , 2010, Journal of the Geological Society.

[34]  M. Loutre,et al.  Total irradiation during any time interval of the year using elliptic integrals , 2010 .

[35]  N. Diffenbaugh,et al.  Rapid, time-transgressive, and variable responses to early Holocene midcontinental drying in North America , 2010 .

[36]  P. Tarasov,et al.  Climate in continental interior Asia during the longest interglacial of the past 500 000 years: the new MIS 11 records from Lake Baikal, SE Siberia , 2009 .

[37]  P. Tarasov,et al.  Late Glacial and Holocene changes in vegetation cover and climate in southern Siberia derived from a 15 kyr long pollen record from Lake Kotokel , 2009 .

[38]  P. Tzedakis The MIS 11 - MIS 1 analogy, southern European vegetation, atmospheric methane and the , 2009 .

[39]  B. Glaser,et al.  Middle and Late Pleistocene loess sequences at Batajnica, Vojvodina, Serbia , 2009 .

[40]  M. S. Sánchez Goñi,et al.  Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr , 2008, Quaternary Research.

[41]  A. Berger,et al.  Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records , 2008 .

[42]  U. Röhl,et al.  Uniform climate development between the subtropical and subpolar Northeast Atlantic across marine isotope stage , 2008 .

[43]  J. Duprat,et al.  Contrasting impacts of Dansgaard-Oeschger events over a western European latitudinal transect modulated by orbital parameters , 2008 .

[44]  T. Stocker,et al.  High-resolution carbon dioxide concentration record 650,000–800,000 years before present , 2008, Nature.

[45]  J. Kutzbach,et al.  Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years , 2008 .

[46]  J. Kutzbach,et al.  Sensitivity of the Australian summer monsoon to tilt and precession forcing , 2007 .

[47]  Zhengtang Guo,et al.  Strong summer monsoon during the cool MIS-13 , 2007 .

[48]  F. Riedel,et al.  Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records , 2007 .

[49]  E. Pardo‐Igúzquiza,et al.  Palynological evidence for astronomical forcing in Early Miocene lacustrine deposits from Rubielos de Mora Basin (NE Spain) , 2007 .

[50]  H. Pälike,et al.  The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation trends , 2006 .

[51]  R. Oglesby,et al.  Understanding the Mid-Holocene Climate , 2006 .

[52]  V. Brovkin,et al.  Vegetation dynamics amplifies precessional forcing , 2006 .

[53]  P. Tzedakis Towards an understanding of the response of southern European vegetation to orbital and suborbital climate variability , 2005 .

[54]  D. Demske,et al.  Vegetation and climate variability during the Last Interglacial evidenced in the pollen record from Lake Baikal , 2005 .

[55]  Michel Crucifix,et al.  Vegetation and climate variability: a GCM modelling study , 2005 .

[56]  R. Betts,et al.  Pre-industrial-potential and Last Glacial Maximum global vegetation simulated with a coupled climate-biosphere model: diagnosis of bioclimatic relationships , 2005 .

[57]  N. Shackleton,et al.  The Duration of Forest Stages in Southern Europe and Interglacial Climate Variability , 2004, Science.

[58]  E. Bard,et al.  A biomass burning record from the West Equatorial Pacific over the last 360 ky: methodological, climatic and anthropic implications , 2004 .

[59]  S. Weber,et al.  The response of the African summer monsoon to remote and local forcing due to precession and obliquity , 2003 .

[60]  M. Loutre,et al.  Marine Isotope Stage 11 as an analogue for the present interglacial , 2003 .

[61]  J. Kutzbach,et al.  Mid-Holocene climates of the Americas: a dynamical response to changed seasonality , 2003 .

[62]  M. Strecker,et al.  East African climate change and orbital forcing during the last 175 kyr BP , 2003 .

[63]  Victor Brovkin,et al.  Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER‐2 model , 2002 .

[64]  Victor Brovkin,et al.  Climate-vegetation interaction , 2002 .

[65]  M. Loutre,et al.  Transient simulations over the last interglacial period (126–115 kyr BP): feedback and forcing analysis , 2002 .

[66]  F. Woodward,et al.  Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models , 2001 .

[67]  D. Olago Long-term temporal characteristics of palaeomonsoon dynamics in equatorial Africa , 2000 .

[68]  J. Farrell,et al.  Marine Isotope Stage 11 (MIS 11): new insights for a warm future , 2000 .

[69]  V. Brovkin,et al.  A continuous climate-vegetation classification for use in climate-biosphere studies , 1997 .

[70]  J. Kutzbach,et al.  The Response of Northern Hemisphere Extratropical Climate and Vegetation to Orbitally Induced Changes in Insolation during the Last Interglaciation , 1995, Quaternary Research.

[71]  W. Cramer,et al.  The IIASA database for mean monthly values of temperature , 1991 .

[72]  G. North,et al.  Filtering of Milankovitch Cycles by Earth's Geography , 1991, Quaternary Research.

[73]  A. Mix,et al.  Earth's precession cycle and Quaternary climatic change in tropical Africa , 1987, Nature.

[74]  J. S. Olson,et al.  Major world ecosystem complexes ranked by carbon in live vegetation: a database , 1985 .

[75]  André Berger,et al.  Long-term variations of daily insolation and Quaternary climatic changes , 1978 .

[76]  L. Dupont,et al.  Continuous vegetation record of the Greater Cape Floristic Region (South Africa) covering the past 300 000 years , 2022 .

[77]  Q. Li,et al.  Vegetation and climate change during the Marine Isotope Stage 3 in China , 2016 .

[78]  S. Drijfhout,et al.  Response of the North African summer monsoon to precession and obliquity forcings in the EC-Earth GCM , 2014, Climate Dynamics.

[79]  J. Hansen,et al.  EPICA Dome C record of glacial and interglacial intensities , 2010 .

[80]  Zhengtang Guo,et al.  Mid-pleistocene vermiculated red soils in southern China as an indication of unusually strengthened East Asian monsoon , 2006 .

[81]  M. Loutre,et al.  Equatorial insolation: from precession harmonics to eccentricity frequencies , 2006 .

[82]  R. Schneider,et al.  Response of tropical African and East Atlantic climates to orbital forcing over the last 1.7 Ma , 2005, Geological Society, London, Special Publications.

[83]  André Berger,et al.  Insolation values for the climate of the last 10 , 1991 .

[84]  H. Lieth Modeling the Primary Productivity of the World , 1975 .