Human Osteopetrosis and Other Sclerosing Disorders: Recent Genetic Developments

[1]  A. Schulz,et al.  Loss of the ClC-7 Chloride Channel Leads to Osteopetrosis in Mice and Man , 2001, Cell.

[2]  R. Gershoni-baruch,et al.  Mutations in the gene encoding the latency-associated peptide of TGF-β1 cause Camurati-Engelmann disease , 2000, Nature Genetics.

[3]  W. Hul,et al.  Further Evidence for Genetic Heterogeneity Within Type II Autosomal Dominant Osteopetrosis , 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[4]  Naoyuki Taniguchi,et al.  Domain-specific mutations in TGFB1 result in Camurati-Engelmann disease , 2000, Nature Genetics.

[5]  A. Schulz,et al.  Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. , 2000, Human molecular genetics.

[6]  L. Notarangelo,et al.  Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis , 2000, Nature Genetics.

[7]  S. Blanton,et al.  Confirmation of the mapping of the Camurati-Englemann locus to 19q13. 2 and refinement to a 3.2-cM region. , 2000, Genomics.

[8]  O. Jaillon,et al.  The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants. , 2000, Bone.

[9]  M. Horton,et al.  Study of the Nonresorptive Phenotype of Osteoclast‐like Cells from Patients with Malignant Osteopetrosis: A New Approach to Investigating Pathogenesis , 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[10]  J. Laredo,et al.  Type II autosomal dominant osteopetrosis (Albers-Schönberg disease): clinical and radiological manifestations in 42 patients. , 2000, Bone.

[11]  Y. Fukushima,et al.  Genetic mapping of the Camurati-Engelmann disease locus to chromosome 19q13.1-q13.3. , 2000, American journal of human genetics.

[12]  C. Bosman,et al.  Mechanisms of Osteoclast Dysfunction in Human Osteopetrosis: Abnormal Osteoclastogenesis and Lack of Osteoclast‐Specific Adhesion Structures , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[13]  Yuqiong Liang,et al.  Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification , 1999, Nature Genetics.

[14]  B. Gelb,et al.  Determination of Bone Markers in Pycnodysostosis: Effects of Cathepsin K Deficiency on Bone Matrix Degradation , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[15]  Joie Davis,et al.  Mutations of CTSK Result in Pycnodysostosis via a Reduction in Cathepsin K Protein , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[16]  T. Foroud,et al.  Locus heterogeneity of autosomal dominant osteopetrosis (ADO). , 1999, The Journal of clinical endocrinology and metabolism.

[17]  J. Vacher,et al.  Genetic localization and transmission of the mouse osteopetrotic grey-lethal mutation , 1999, Mammalian Genome.

[18]  H. Weinstein,et al.  Characterization of novel cathepsin K mutations in the pro and mature polypeptide regions causing pycnodysostosis. , 1999, The Journal of clinical investigation.

[19]  Daniel L. Koller,et al.  Linkage of a QTL Contributing to Normal Variation in Bone Mineral Density to Chromosome 11q12–13 , 1998, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[20]  V. Sheffield,et al.  Human autosomal recessive osteopetrosis maps to 11q13, a position predicted by comparative mapping of the murine osteosclerosis (oc) mutation. , 1998, Human molecular genetics.

[21]  R. Shnier,et al.  Camurati‐Engelmann Disease: Two Case Reports Describing Metadiaphyseal Dysplasia Associated with Cerebellar Ataxia , 1998, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[22]  J. Caamaño,et al.  Osteopetrosis in mice lacking NF-κB1 and NF-κB2 , 1997, Nature Medicine.

[23]  W. Hul,et al.  Localization of a gene for autosomal dominant osteopetrosis (Albers-Schönberg disease) to chromosome 1p21. , 1997, American journal of human genetics.

[24]  Mark L. Johnson,et al.  Linkage of a gene causing high bone mass to human chromosome 11 (11q12-13) , 1997, American journal of human genetics.

[25]  G Shimamoto,et al.  Osteoprotegerin: A Novel Secreted Protein Involved in the Regulation of Bone Density , 1997, Cell.

[26]  S. Mckercher,et al.  Osteopetrosis in mice lacking haematopoietic transcription factor PU.1 , 1997, Nature.

[27]  E. Remmers,et al.  Localization of the gene responsible for the op (osteopetrotic) defect in rats on chromosome 10 , 1996, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[28]  L. Peltonen,et al.  Osteoporosis-pseudoglioma syndrome, a disorder affecting skeletal strength and vision, is assigned to chromosome region 11q12-13. , 1996, American journal of human genetics.

[29]  C. Debouck,et al.  Cathepsin K, but Not Cathepsins B, L, or S, Is Abundantly Expressed in Human Osteoclasts (*) , 1996, The Journal of Biological Chemistry.

[30]  Wei Chen,et al.  Molecular cloning and characterization of a putative novel human osteoclast-specific 116-kDa vacuolar proton pump subunit. , 1996, Biochemical and biophysical research communications.

[31]  R. Rodriguiz,et al.  Long-term treatment of osteopetrosis with recombinant human interferon gamma. , 1995, The New England journal of medicine.

[32]  W. Friedrich,et al.  Bone marrow transplantation for autosomal recessive osteopetrosis. A report from the Working Party on Inborn Errors of the European Bone Marrow Transplantation Group. , 1994, The Journal of pediatrics.

[33]  E. Wagner,et al.  c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. , 1994, Science.

[34]  A. Fischer,et al.  Autosomal recessive osteopetrosis: variability of findings at diagnosis and during the natural course. , 1994, Pediatrics.

[35]  N. Jenkins,et al.  Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein , 1993, Cell.

[36]  D. B. Evans,et al.  Identification of two subunit A isoforms of the vacuolar H(+)-ATPase in human osteoclastoma. , 1993, The Journal of biological chemistry.

[37]  T. Yoneda,et al.  Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. , 1992, The Journal of clinical investigation.

[38]  A. Fischer,et al.  Mineral metabolism in infants with malignant osteopetrosis: Heterogeneity in plasma 1,25‐dihydroxyvitamin D levels and bone histology , 1992, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[39]  W. Wiktor-Jedrzejczak,et al.  Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[40]  S. Marks,et al.  Osteoclast biology: lessons from mammalian mutations. , 1989, American journal of medical genetics.

[41]  S. Teitelbaum,et al.  Osteoclastic bone resorption by a polarized vacuolar proton pump. , 1989, Science.

[42]  J. Bollerslev Autosomal dominant osteopetrosis: bone metabolism and epidemiological, clinical, and hormonal aspects. , 1989, Endocrine reviews.

[43]  P. Lane,et al.  Osteosclerosis, a recessive skeletal mutation on chromosome 19 in the mouse. , 1985, The Journal of heredity.

[44]  D. Hewett‐Emmett,et al.  Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. , 1983, Proceedings of the National Academy of Sciences of the United States of America.