Analog optical computing

The concept of optical computing is reintroduced with an important new twist — optical computing not as a digital machine, but as an analog engine able to serve as a hardware accelerator for existing electronic computers.

[1]  Derek de Solla Price A History of Calculating Machines , 1984, IEEE Micro.

[2]  James S. Small The Analogue Alternative: The Electronic Analogue Computer in Britain and the USA, 1930-1975 , 2001 .

[3]  Ata Mahjoubfar,et al.  Optical Data Compression in Time Stretch Imaging , 2015, PloS one.

[4]  G. Agrawal,et al.  Nonlinear optical phenomena in silicon waveguides: modeling and applications. , 2007, Optics express.

[5]  J. Soto-Crespo,et al.  Experimental evidence for soliton explosions. , 2002, Physical review letters.

[6]  B. Jalali,et al.  Active control of rogue waves for stimulated supercontinuum generation. , 2008, Physical review letters.

[7]  L Larger,et al.  Real time noise and wavelength correlations in octave-spanning supercontinuum generation. , 2013, Optics express.

[8]  Bahram Jalali,et al.  Fluctuations and correlations in modulation instability , 2012, Nature Photonics.

[9]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[10]  B. Jalali,et al.  Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena , 2009, Nature.

[11]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[12]  G. Steinmeyer,et al.  Predictability of rogue events. , 2015, Physical review letters.

[13]  Chiye Li,et al.  Single-shot compressed ultrafast photography at one hundred billion frames per second , 2014, Nature.

[14]  B. Jalali,et al.  Measuring single-shot modulation instability and supercontinuum spectra at megahertz rates , 2013 .

[15]  Charles Care A chronology of analogue computing , 2006 .

[16]  Michal Lipson,et al.  Wavelength conversion and unicast of 10-Gb/s data spanning up to 700 nm using a silicon nanowaveguide. , 2012, Optics express.

[17]  Walter Isaacson,et al.  The Innovators: How a Group of Hackers, Geniuses, and Geeks Created the Digital Revolution , 2014 .

[18]  G. Brumfiel High-energy physics: Down the petabyte highway , 2011, Nature.

[19]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[20]  A. S. Bhushan,et al.  Time-domain optical sensing , 1999 .

[21]  Ferenc Krausz,et al.  Femtosecond solid-state lasers , 1992 .

[22]  William Aspray,et al.  Computing before computers , 1990 .

[23]  B. Jalali,et al.  Amplified wavelength–time transformation for real-time spectroscopy , 2008 .

[24]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[25]  Rodney S. Tucker,et al.  The role of optics in computing , 2010 .

[26]  L. Larger,et al.  Real-time full bandwidth measurement of spectral noise in supercontinuum generation , 2012, Scientific reports.

[27]  Erich P. Ippen,et al.  Principles of passive mode locking , 1994 .

[28]  Ray Bert \IThe Innovators: How a Group of Hackers, Geniuses, and Geeks Created the Digital Revolution\N, By Walter Isaacson. New York City: Simon & Schuster, 2014 , 2015 .

[29]  Bahram Jalali,et al.  Coherent Time-Stretch Transform for Near-Field Spectroscopy , 2014, IEEE Photonics Journal.

[30]  Neil G. R. Broderick,et al.  Observation of soliton explosions in a passively mode-locked fiber laser , 2014, 1409.8373.

[31]  N. Suzuki,et al.  FDTD Analysis of Two-Photon Absorption and Free-Carrier Absorption in Si High-Index-Contrast Waveguides , 2007, Journal of Lightwave Technology.