Genome sequence of the progenitor of the wheat D genome Aegilops tauschii

[1]  John K. McCooke,et al.  A chromosome conformation capture ordered sequence of the barley genome , 2017, Nature.

[2]  J. Dvorak,et al.  Sequencing and comparative analyses of Aegilops tauschii chromosome arm 3DS reveal rapid evolution of Triticeae genomes. , 2017, Journal of genetics and genomics = Yi chuan xue bao.

[3]  Kevin L. Childs,et al.  Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize[OPEN] , 2016, Plant Cell.

[4]  Robert P. Davey,et al.  An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations , 2016, bioRxiv.

[5]  J. Dvorak,et al.  Rapid evolutionary dynamics in a 2.8-Mb chromosomal region containing multiple prolamin and resistance gene families in Aegilops tauschii. , 2016, The Plant journal : for cell and molecular biology.

[6]  Sergey Koren,et al.  Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii , a progenitor of bread wheat , with the mega-reads algorithm , 2016 .

[7]  S. Cloutier,et al.  RGAugury: a pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants , 2016, BMC Genomics.

[8]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[9]  Nic Herndon,et al.  Tools and pipelines for BioNano data: molecule assembly pipeline and FASTA super scaffolding tool , 2015, bioRxiv.

[10]  Xun Xu,et al.  Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology , 2014, GigaScience.

[11]  J. Batley,et al.  A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome , 2014, Science.

[12]  Chunguang Du,et al.  HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes , 2014, Proceedings of the National Academy of Sciences.

[13]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[14]  Michael Roberts,et al.  The MaSuRCA genome assembler , 2013, Bioinform..

[15]  J. Dvorak,et al.  The Gene Sr33, an Ortholog of Barley Mla Genes, Encodes Resistance to Wheat Stem Rust Race Ug99 , 2013, Science.

[16]  Yupeng Wang,et al.  MCScanX-transposed: detecting transposed gene duplications based on multiple colinearity scans , 2013, Bioinform..

[17]  Douglas G. Scofield,et al.  The Norway spruce genome sequence and conifer genome evolution , 2013, Nature.

[18]  J. Dvorak,et al.  Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. , 2013, The New phytologist.

[19]  Mihaela M. Martis,et al.  A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor , 2013, Proceedings of the National Academy of Sciences.

[20]  Steven S Xu,et al.  Synthetic Hexaploids: Harnessing Species of the Primary Gene Pool for Wheat Improvement , 2013 .

[21]  Yadan Luo,et al.  Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation , 2013, Nature.

[22]  H. Müller,et al.  Insular Organization of Gene Space in Grass Genomes , 2013, PloS one.

[23]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[24]  Mihaela M. Martis,et al.  A physical, genetic and functional sequence assembly of the barley genome. , 2022 .

[25]  P. Kwok,et al.  Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly , 2012, Nature Biotechnology.

[26]  Laurie Goodman,et al.  Large and linked in scientific publishing , 2012, GigaScience.

[27]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[28]  Jeremy D. DeBarry,et al.  MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity , 2012, Nucleic acids research.

[29]  S. Salzberg,et al.  FLASH: fast length adjustment of short reads to improve genome assemblies , 2011, Bioinform..

[30]  Bernd Weisshaar,et al.  Targeted Identification of Short Interspersed Nuclear Element Families Shows Their Widespread Existence and Extreme Heterogeneity in Plant Genomes[W] , 2011, Plant Cell.

[31]  J. Dvorak,et al.  Gene Space Dynamics During the Evolution of Aegilops tauschii, Brachypodium distachyon, Oryza sativa, and Sorghum bicolor Genomes , 2011, Molecular biology and evolution.

[32]  Susan R. Wessler,et al.  MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences , 2010, Nucleic acids research.

[33]  M. Schatz,et al.  Assembly of large genomes using second-generation sequencing. , 2010, Genome research.

[34]  Sai Guna Ranjan Gurazada,et al.  Genome sequencing and analysis of the model grass Brachypodium distachyon , 2010, Nature.

[35]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[36]  Dawn H. Nagel,et al.  The B73 Maize Genome: Complexity, Diversity, and Dynamics , 2009, Science.

[37]  Cristian Chaparro,et al.  Exceptional Diversity, Non-Random Distribution, and Rapid Evolution of Retroelements in the B73 Maize Genome , 2009, PLoS genetics.

[38]  M T Clegg,et al.  Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae , 2009, Proceedings of the National Academy of Sciences.

[39]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[40]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[41]  Kazuo Shinozaki,et al.  TriFLDB: A Database of Clustered Full-Length Coding Sequences from Triticeae with Applications to Comparative Grass Genomics[C][W][OA] , 2009, Plant Physiology.

[42]  Mihaela M. Martis,et al.  The Sorghum bicolor genome and the diversification of grasses , 2009, Nature.

[43]  G. Muehlbauer,et al.  Comprar Genetics and Genomics of the Triticeae | Feuillet, Cathérine | 9780387774886 | Springer , 2009 .

[44]  J. Dvorak Triticeae Genome Structure and Evolution , 2009 .

[45]  Jesús Vicente-Carbajosa,et al.  DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques , 2008, BMC Research Notes.

[46]  Lawrence M Leemis,et al.  Univariate Distribution Relationships , 2008 .

[47]  H. Kanamori,et al.  Chromosome-specific distribution of nucleotide substitutions in telomeric repeats of rice (Oryza sativa L.). , 2007, Molecular biology and evolution.

[48]  Stefan Kurtz,et al.  LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons , 2008, BMC Bioinformatics.

[49]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[50]  Jan Dvorak,et al.  Genome Plasticity a Key Factor in the Success of Polyploid Wheat Under Domestication , 2007, Science.

[51]  Zhao Xu,et al.  LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons , 2007, Nucleic Acids Res..

[52]  E. D. Earle,et al.  Nuclear DNA content of some important plant species , 1991, Plant Molecular Biology Reporter.

[53]  Mihai Pop,et al.  Minimus: a fast, lightweight genome assembler , 2007, BMC Bioinformatics.

[54]  Gene A. Brewer,et al.  Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Rod A Wing,et al.  Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species. , 2005, Genome research.

[56]  Takuji Sasaki,et al.  The map-based sequence of the rice genome , 2005, Nature.

[57]  李佩芳 International Rice Genome Sequencing Project. 2005. The map-based sequence of the rice genome. , 2005 .

[58]  Pierre Sourdille,et al.  Molecular Basis of Evolutionary Events That Shaped the Hardness Locus in Diploid and Polyploid Wheat Species (Triticum and Aegilops)w⃞ , 2005, The Plant Cell Online.

[59]  J. Dvorak,et al.  Deletion Polymorphism in Wheat Chromosome Regions With Contrasting Recombination Rates , 2004, Genetics.

[60]  Jianxin Ma,et al.  Rapid recent growth and divergence of rice nuclear genomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[61]  A. Paterson,et al.  Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[62]  J. Dvorak,et al.  Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination , 1995, Theoretical and Applied Genetics.

[63]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[64]  M. Yano,et al.  Physical maps and recombination frequency of six rice chromosomes. , 2003, The Plant journal : for cell and molecular biology.

[65]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[66]  Carolyn Thomas,et al.  High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. , 2003, Genomics.

[67]  James K. M. Brown,et al.  Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. , 2002, Genome research.

[68]  G. Presting,et al.  Sequence organization of barley centromeres. , 2001, Nucleic acids research.

[69]  P. Pevzner,et al.  An Eulerian path approach to DNA fragment assembly , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[70]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[71]  Eugene W. Myers,et al.  A whole-genome assembly of Drosophila. , 2000, Science.

[72]  M. Adams,et al.  High throughput direct end sequencing of BAC clones. , 1999, Nucleic acids research.

[73]  K. Devos,et al.  Plant comparative genetics after 10 years. , 1998, Science.

[74]  J. Dvorak,et al.  The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat , 1998, Theoretical and Applied Genetics.

[75]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[76]  H. Müller Weighted Local Regression and Kernel Methods for Nonparametric Curve Fitting , 1987 .

[77]  B. Gill,et al.  Resistance in Aegilops squarrosa to wheat leaf rust, wheat powdery mildew, greenbug, and Hessian fly , 1986 .

[78]  E. R. Sears,et al.  THE ORIGIN OF TRITICUM SPELTA AND ITS FREE-THRESHING HEXAPLOID RELATIVES , 1946 .