A canonical connection on bundles on Riemann surfaces and Quillen connection on the theta bundle

Abstract We investigate the symplectic geometric and also the differential geometric aspects of the moduli space of connections on a compact connected Riemann surface X. Fix a theta characteristic K X 1 / 2 on X; it defines a theta divisor on the moduli space M of stable vector bundles on X of rank r degree zero. Given a vector bundle E ∈ M lying outside the theta divisor, we construct a natural holomorphic connection on E that depends holomorphically on E. Using this holomorphic connection, we construct a canonical holomorphic isomorphism between the following two: (1) the moduli space C of pairs ( E , D ) , where E ∈ M and D is a holomorphic connection on E, and (2) the space Conn ( Θ ) given by the sheaf of holomorphic connections on the line bundle on M associated to the theta divisor. The above isomorphism between C and Conn ( Θ ) is symplectic structure preserving, and it moves holomorphically as X runs over a holomorphic family of Riemann surfaces.

[1]  J. Bismut,et al.  Analytic torsion and holomorphic determinant bundles. II: Direct images and Bott-Chern forms , 1988 .

[2]  Carlos Simpson,et al.  Moduli of representations of the fundamental group of a smooth projective variety I , 1994 .

[3]  Yves Laszlo Un théorème de Riemann pour les diviseurs thêta sur les espaces de modules de fibrés stables sur une courbe , 1991 .

[4]  I. Biswas On the moduli space of holomorphic G-connections on a compact Riemann surface , 2019, European Journal of Mathematics.

[5]  Raoul Bott,et al.  The Yang-Mills equations over Riemann surfaces , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[6]  M. Narasimhan,et al.  Deformations of the Moduli Space of Vector Bundles Over an Algebraic Curve , 1975 .

[7]  I. Biswas Infinitesimal deformations of the tangent bundle of a moduli space of vector bundles over a curve , 2006 .

[8]  C. S. Seshadri,et al.  Stable and unitary vector bundles on a compact Riemann surface , 1965 .

[9]  I. Biswas,et al.  A construction of a universal connection , 2012 .

[10]  P. Deligne,et al.  Equations differentielles à points singuliers reguliers , 1970 .

[11]  I. Biswas,et al.  Meromorphic connections, determinant line bundles and the Tyurin parametrization , 2019, Asian Journal of Mathematics.

[12]  M. Atiyah Complex analytic connections in fibre bundles , 1957 .

[13]  S. Ramanan The moduli spaces of vector bundles over an algebraic curve , 1973 .

[14]  W. Goldman The Symplectic Nature of Fundamental Groups of Surfaces , 1984 .

[15]  D. Quillen Determinants of Cauchy-Riemann operators over a Riemann surface , 1985 .

[16]  A. Weil Généralisation des fonctions abéliennes , 1979 .

[17]  J. Bismut,et al.  Analytic Torsion and Holomorphic Determinant Bundles II , 2004 .

[18]  P. Newstead Introduction to Moduli Problems and Orbit Spaces , 2013 .

[19]  J. Bismut,et al.  Analytic torsion and holomorphic determinant bundles I. Bott-Chern forms and analytic torsion , 1988 .

[20]  M. Narasimhan,et al.  Spectral curves and the generalised theta divisor. , 1989 .