Simulating Our LifeSteps by Example

During the past few decades, a number of effective methods for indexing, query processing, and knowledge discovery in moving object databases have been proposed. An interesting research direction that has recently emerged handles semantics of movement instead of raw spatio-temporal data. Semantic annotations, such as “stop,” “move,” “at home,” “shopping,” “driving,” and so on, are either declared by the users (e.g., through social network apps) or automatically inferred by some annotation method and are typically presented as textual counterparts along with spatial and temporal information of raw trajectories. It is natural to argue that such “spatio-temporal-textual” sequences, called semantic trajectories, form a realistic representation model of the complex everyday life (hence, mobility) of individuals. Towards handling semantic trajectories of moving objects in Semantic Mobility Databases, the lack of real datasets leads to the need to design realistic simulators. In the context of the above discussion, the goal of this work is to realistically simulate the mobility life of a large-scale population of moving objects in an urban environment. Two simulator variations are presented: the core Hermoupolis simulator is parametric driven (i.e., user-defined parameters tune every movement aspect), whereas the expansion of the former, called Hermoupolisby-example, follows the generate-by-example paradigm and is self-tuned by looking inside a real small (sample) dataset. We stress test our proposal and demonstrate its novel characteristics with respect to related work.

[1]  Panos Kalnis,et al.  On Discovering Moving Clusters in Spatio-temporal Data , 2005, SSTD.

[2]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[3]  Lei Chen,et al.  Finding time period-based most frequent path in big trajectory data , 2013, SIGMOD '13.

[4]  Robert Weibel,et al.  Discovering relative motion patterns in groups of moving point objects , 2005, Int. J. Geogr. Inf. Sci..

[5]  Christos Faloutsos,et al.  Efficient retrieval of similar time sequences under time warping , 1998, Proceedings 14th International Conference on Data Engineering.

[6]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[7]  Stefano Spaccapietra,et al.  Semantic trajectories modeling and analysis , 2013, CSUR.

[8]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[9]  Kai Zheng,et al.  STMaker - A System to Make Sense of Trajectory Data , 2014, Proc. VLDB Endow..

[10]  Yannis Manolopoulos,et al.  On the Generation of Time-Evolving Regional Data* , 2002, GeoInformatica.

[11]  Davy Janssens,et al.  On the Management and Analysis of Our LifeSteps , 2014, SKDD.

[12]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[13]  Dino Pedreschi,et al.  Time-focused clustering of trajectories of moving objects , 2006, Journal of Intelligent Information Systems.

[14]  D. Gática-Pérez,et al.  Towards rich mobile phone datasets: Lausanne data collection campaign , 2010 .

[15]  Dieter Pfoser,et al.  Generating semantics-based trajectories of moving objects , 2003, Comput. Environ. Urban Syst..

[16]  Ralf Hartmut Güting,et al.  BerlinMOD: a benchmark for moving object databases , 2009, The VLDB Journal.

[17]  Torben Bach Pedersen,et al.  ST--ACTS: a spatio-temporal activity simulator , 2006, GIS '06.

[18]  Ralf Hartmut Güting,et al.  MWGen: A Mini World Generator , 2012, 2012 IEEE 13th International Conference on Mobile Data Management.

[19]  Yannis Theodoridis,et al.  On the Generation of Spatiotemporal Datasets , 1999 .

[20]  Alberto O. Mendelzon,et al.  Fourier transform based techniques in efficient retrieval of similar time sequences , 1999 .

[21]  Haibo Hu,et al.  GAMMA: A Framework for Moving Object Simulation , 2005, SSTD.

[22]  Bettina Speckmann,et al.  Efficient Detection of Patterns in 2D Trajectories of Moving Points , 2007, GeoInformatica.

[23]  Ralf Hartmut Güting,et al.  Symbolic Trajectories , 2015, TSAS.

[24]  Nikos Pelekis,et al.  Clustering uncertain trajectories , 2011, Knowledge and Information Systems.

[25]  José Moreira,et al.  Oporto: A Realistic Scenario Generator for Moving Objects , 1999, Proceedings. Tenth International Workshop on Database and Expert Systems Applications. DEXA 99.

[26]  Imad Aad,et al.  From big smartphone data to worldwide research: The Mobile Data Challenge , 2013, Pervasive Mob. Comput..

[27]  Nikos Pelekis,et al.  Hermoupolis: A Trajectory Generator for Simulating Generalized Mobility Patterns , 2013, ECML/PKDD.

[28]  Daniel Krajzewicz,et al.  SUMO (Simulation of Urban MObility) - an open-source traffic simulation , 2002 .

[29]  Marios D. Dikaiakos,et al.  TrafficModeler: A Graphical Tool for Programming Microscopic Traffic Simulators through High-Level Abstractions , 2009, VTC Spring 2009 - IEEE 69th Vehicular Technology Conference.

[30]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[31]  Davy Janssens,et al.  Data Science for Simulating the Era of Electric Vehicles , 2012, KI - Künstliche Intelligenz.

[32]  Panos Kalnis,et al.  User oriented trajectory search for trip recommendation , 2012, EDBT '12.

[33]  Lei Chen,et al.  On the Marriage of Edit Distance and Lp Norms , 2004, VLDB 2004.

[34]  Nikos Pelekis,et al.  Segmentation and Sampling of Moving Object Trajectories Based on Representativeness , 2012, IEEE Transactions on Knowledge and Data Engineering.

[35]  W. A. Beyer,et al.  Some Biological Sequence Metrics , 1976 .

[36]  Thomas Brinkhoff,et al.  A Framework for Generating Network-Based Moving Objects , 2002, GeoInformatica.

[37]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.

[38]  Christian S. Jensen,et al.  A framework for efficient spatial web object retrieval , 2012, The VLDB Journal.

[39]  Lei Chen,et al.  On The Marriage of Lp-norms and Edit Distance , 2004, VLDB.

[40]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[41]  Robert Weibel,et al.  From A to B, randomly: a point-to-point random trajectory generator for animal movement , 2015, Int. J. Geogr. Inf. Sci..

[42]  Nikos Pelekis,et al.  Hermessem: A semantic-aware framework for the management and analysis of our LifeSteps , 2015, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[43]  Lidan Shou,et al.  Splitter: Mining Fine-Grained Sequential Patterns in Semantic Trajectories , 2014, Proc. VLDB Endow..

[44]  Guannan Liu,et al.  A cost-effective recommender system for taxi drivers , 2014, KDD.

[45]  Christian S. Jensen,et al.  Discovery of convoys in trajectory databases , 2008, Proc. VLDB Endow..

[46]  Jiawei Han,et al.  Swarm: Mining Relaxed Temporal Moving Object Clusters , 2010, Proc. VLDB Endow..

[47]  Fosca Giannotti,et al.  Synthetic generation of cellular network positioning data , 2005, GIS '05.