Approximately counting bases of bicircular matroids

We give a fully polynomial-time randomised approximation scheme (FPRAS) for the number of bases in a bicircular matroids. This is a natural class of matroids for which counting bases exactly is #P-hard and yet approximate counting can be done efficiently.

[1]  Kun He,et al.  Tight bounds for popping algorithms , 2020, Random Struct. Algorithms.

[2]  Marc Noy,et al.  On the Number of Bases of Bicircular Matroids , 2005 .

[3]  Kimmo Eriksson,et al.  Strong Convergence and a Game of Numbers , 1996, Eur. J. Comb..

[4]  Mark Jerrum,et al.  Uniform sampling through the Lovasz local lemma , 2016, STOC.

[5]  Michael Snook,et al.  Counting Bases of Representable Matroids , 2012, Electron. J. Comb..

[6]  Nima Anari,et al.  Log-concave polynomials II: high-dimensional walks and an FPRAS for counting bases of a matroid , 2018, STOC.

[7]  Adrien Kassel,et al.  LEARNING ABOUT CRITICAL PHENOMENA FROM SCRIBBLES AND SANDPILES , 2015 .

[8]  Vladimir Kolmogorov,et al.  A Faster Approximation Algorithm for the Gibbs Partition Function , 2016, COLT.

[9]  Tomás Feder,et al.  Balanced matroids , 1992, STOC '92.

[10]  Mark Jerrum Two Remarks Concerning Balanced Matroids , 2006, Comb..

[11]  David Bruce Wilson,et al.  Generating random spanning trees more quickly than the cover time , 1996, STOC '96.

[12]  M. Jerrum Counting, Sampling and Integrating: Algorithms and Complexity , 2003 .

[13]  Robin Pemantle,et al.  Generating a Random Sink-free Orientation in Quadratic Time , 2002, Electron. J. Comb..

[14]  David Bruce Wilson,et al.  How to Get a Perfectly Random Sample from a Generic Markov Chain and Generate a Random Spanning Tree of a Directed Graph , 1998, J. Algorithms.

[15]  Igor Pak,et al.  Generalized loop‐erased random walks and approximate reachability , 2014, Random Struct. Algorithms.

[16]  Heng Guo,et al.  Modified log-Sobolev Inequalities for Strongly Log-Concave Distributions , 2019, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[17]  Eric Vigoda,et al.  Elementary bounds on Poincaré and log-Sobolev constants for decomposable Markov chains , 2004, math/0503537.

[18]  Marc Noy,et al.  On the Complexity of Computing the Tutte Polynomial of Bicircular Matroids , 2006, Combinatorics, Probability and Computing.

[19]  M. Huber Approximation algorithms for the normalizing constant of Gibbs distributions , 2012, 1206.2689.

[20]  Stephen B. Maurer Matrix Generalizations of Some Theorems on Trees, Cycles and Cocycles in Graphs , 1976 .

[21]  D. J. A. Welsh,et al.  On the Number of Combinatorial Geometries , 1971 .

[22]  Richard Kenyon,et al.  Random curves on surfaces induced from the Laplacian determinant , 2012, 1211.6974.

[23]  Mario Szegedy,et al.  Moser and tardos meet Lovász , 2011, STOC.

[24]  Volker Kaibel On the Expansion of Graphs of 0/1-Polytopes , 2004, The Sharpest Cut.

[25]  Eric Vigoda,et al.  Adaptive Simulated Annealing: A Near-optimal Connection between Sampling and Counting , 2007, FOCS.

[26]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[27]  Milena Mihail On the Expansion of Combinatorial Polytopes , 1992, MFCS.

[28]  Mark Jerrum,et al.  A Polynomial-Time Approximation Algorithm for All-Terminal Network Reliability , 2017, ICALP.