Development of a Darcy-Brinkman model to simulate water flow and tracer transport in a heterogeneous karstic aquifer (Val d’Orléans, France)

Darcy’s law is the equation of reference widely used to model aquifer flows. However, its use to model karstic aquifers functioning with large pores is problematic. The physics occurring within the karstic conduits requires the use of a more representative macroscopic equation. A hydrodynamic model is presented which is adapted to the karstic aquifer of the Val d’Orléans (France) using two flow equations: (1) Darcy’s law, used to describe water flow within the massive limestone, and (2) the Brinkman equation, used to model water flow within the conduits. The flow equations coupled with the transport equation allow the prediction of the karst transfer properties. The model was tested by using six dye tracer tests and compared to a model that uses Darcy’s law to describe the flow in karstic conduits. The simulations show that the conduit permeability ranges from 5 × 10−6 to 5.5 × 10−5 m2 and the limestone permeability ranges from 8 × 10−11 to 6 × 10−10 m2. The dispersivity coefficient ranges from 23 to 53 m in the conduits and from 1 to 5 m in the limestone. The results of the simulations carried out using Darcy’s law in the conduits show that the dispersion towards the fractures is underestimated.RésuméLa loi de Darcy est l'équation de la référence utilisée pour modeler les écoulements dans l’aquifère. Cependant, son utilisation de modeler les aquifères karstiques fonctionnant avec de grands pores est problématique. La physique se produisant dans les conduits karstiques exige l'utilisation d’une équation macroscopique plus représentative. Un modèle hydrodynamique est présenté qui est adapté à l’aquifère karstique du Val d’Orléans utilisant deux équations d'écoulement: (1) la loi de Darcy employée pour décrire l'écoulement d'eau dans les calcaires massifs, et (2) l'équation de Brinkman, employée pour modeler l'écoulement d'eau dans les conduits. Les équations d’écoulement couplées avec l’équation de transport permettent la prévision des propriétés de transfert de karst. Le modèle a été examiné en employant six essais de traçages et comparé à un modèle qui emploie la loi de Darcy pour décrire l'écoulement dans les conduits karstiques. Les simulations montrent que la perméabilité du conduit s'étend de 5 × 10−6 à 5.5 × 10−5 m2 et la perméabilité des calcaires fracturés s'étend de 8 × 10−11 to 6 × 10−10 m2. Le coefficient de dispersivity s'étend de 23 à 53 m dans les conduits et de 1 à 5 m dans les calcaires fracturés. Les résultats des simulations effectuées en utilisant la loi de Darcy dans les conduits prouvent que la dispersion vers les calcaires fracturés est sous-estimée.ResumenLa ley de Darcy es la ecuación de referencia ampliamente usada para modelar los flujos en los acuíferos. Sin embargo, su uso para modelar el funcionamiento de acuíferos kársticos con grandes poros es problemático. La física que ocurre dentro de los conductos kársticos requiere el uso de una ecuación macroscópica más representativa. Se presenta un modelo hidrodinámico que es adaptado al acuífero kárstico del Val d’Orléans (Francia) usando dos ecuaciones de flujo: (1) La ley de Darcy, usada para describir el flujo de agua dentro de una caliza masiva, y (2) la ecuación de Brinkman, usada para modelar el flujo de agua dentro de los conductos. Las ecuaciones de flujo acopladas con la ecuación de transporte permiten la predicción de las propiedades de transferencia del karst. El modelo fue testeado usando seis pruebas de trazadores colorantes y comparado a un modelo que usa la ley de Darcy para describir el flujo en conductos kársticos. Las simulaciones muestran que la permeabilidad de conducto varía desde 5 × 10−6 a 5.5 × 10−5 m2 y la permeabilidad de la caliza oscila de 8 × 10−11 a 6 × 10−10 m2. Los coeficientes de dispersividad varían desde 23 a 53 m en los conductos y desde 1 a 5 m en la caliza. Los resultados de las simulaciones llevadas a cabo usando la ley de Darcy en los conductos muestran que la dispersión hacia las fracturas está subestimada.摘要达西定律是含水层水流模型中广泛采用的方程。但是, 当它用于大孔隙的喀斯特含水层时有很多问题。 岩溶管道内部的物理过程需要更有代表性的宏观方程描述。应用两个水流方程, 我们提出了一个适用于法国Val d'Orléans的喀斯特含水层的水动力模型 : (1) 达西定律用于描述石灰岩体中水的流动 ; (2)布林克曼方程, 用于表征管道内水的流动。 水流方程耦合运移方程可以预估岩溶的运移参数。 应用六个染料示踪剂试验检验了模型, 并与一个采用达西定律描述岩溶管道内水流的模型进行了对比。模拟显示, 管道的渗透率在5 × 10−6到5.5 × 10−5 m2之间, 石灰岩的渗透率在8 × 10−11到6 × 10−10 m2之间。管道的弥散系数在23到53 m之间, 石灰岩的弥散系数在1到5 m之间。 管道采用达西定律描述的模拟结果显示其对低估了裂隙的弥散度。ResumoA lei de Darcy é a equação de referência largamente utilizada para modelar o escoamento de aquífero. Contudo, a sua utilização para modelar aquíferos cársicos funcionando com poros grandes é problemática. A física que ocorre dentro das condutas cársicas requer o uso de uma equação macroscópica mais representativa. Apresenta-se um modelo hidrodinâmico adaptado ao aquífero cársico de Val d’Orléans (França) que utiliza duas equações de fluxo: (1) a lei de Darcy, utilizada para descrever o escoamento de água dentro do calcário maciço, e (2) a equação de Brinkman, utilizada para modelar o escoamento de água dentro das condutas. As equações de fluxo, acopladas com a equação de transporte, permitem a previsão das propriedades de transferência do carso. O modelo foi testado utilizando seis ensaios com traçador de cor e comparando com um modelo que utiliza a lei de Darcy para descrever o escoamento nas condutas cársicas. As simulações mostram que a permeabilidade da conduta varia entre 5 × 10−6 e 5.5 × 10−5 m2 e que a permeabilidade do calcário varia entre 8 × 10−11 e 6 × 10−10 m2. O coeficiente de dispersividade varia entre 23 e 53 m nas condutas e entre 1 e 5 m no calcário. Os resultados das simulações feitas utilizando a lei de Darcy nas condutas mostram que a dispersão em direcção às fracturas é subestimada.الملخصالخلاصة قانون دارسي هو المُعادلة المرجعية اللذي يُستخدم بكثرة لحساب الجريانات في الاكوفر. قانون دارسي في الاوساط الكارستية ذو المسامية العالية يُتعتبر غير فعال. العَمليات الفيزيائية التي تحدث في المجاري الكارستية تتطلب مُعادلة قادرة على تمثيل هذه العَمليات. النموذج الهيدروديناميكي المُقدم والمُطبق على نظام الكارس في مدينة اورليون يَستخدم معادلتين للجريان (1) :قانون دارسي يُستخدم لوصف الجريان في الصخور الكارستية , (2) مُعادلة Brinkmanتُستخدم لنمذجة جريان المياه في المجاري الكارستية. مُعادلة الجريانات الممزوجة مع مُعادلة الانتقال تسمح بتنبؤ خواص الانتقال. النموذج تم اختباره بواسطة ستة اختبارات لانتقال الصبغة و تم مقارنته مع نموذج رياضي اخر يستخدم قانون دارسي في المجاري الكارستية لوصف الجريان. النتائج بيّنت ان نفاذية المجاري الكارستية تتراوح ما بين 5 × 10−6و5.5 × 10−5م٢ والنفاذية في الصخور تتراوح بين 8 × 10−11و 6 × 10−10م٢. ان النتائج بأستخدام قانون دارسي في المجاري الكارستية تُبيّن ان التشتت بأتجاه التشققات مُقدّر بشكل سيئ.

[1]  Frederick Delay,et al.  Simulations of solute transport in fractured porous media using 2D percolation networks with uncorrelated hydraulic conductivity fields , 2004 .

[2]  H. Brinkman A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles , 1949 .

[3]  L. García,et al.  Development of a Model for Simulation of Solute Transport in a Stream–Aquifer System , 2002 .

[4]  Er-Wei Bai,et al.  Simulation Of Spring Discharge From A Limestone Aquifer In Iowa, USA , 1996 .

[5]  Chih-Yuan Chang Tow Impregnation of Unidirectional Fibrous Preform During Resin Transfer Molding , 2003 .

[6]  Brian Straughan,et al.  Convection in Porous Media , 2008 .

[7]  C. Hsu,et al.  The Brinkman model for natural convection about a semi-infinite vertical flat plate in a porous medium , 1985 .

[8]  M. Lepiller,et al.  Oxydation de la matière organique dans un système hydrologique karstique alimenté par des pertes fluviales (Loiret, France)oxidation of organic matter in a karstic hydrologic unit supplied through stream sinks (Loiret, france) , 1998 .

[9]  P. Maloszewski,et al.  Interpretation of tracer tests performed in fractured rock of the Lange Bramke basin, Germany , 1999 .

[10]  S. Nash,et al.  RISK ASSESSMENT METHODOLOGY FOR KARST AQUIFERS: (1) ESTIMATING KARST CONDUIT-FLOW PARAMETERS , 1997 .

[11]  E. D. Skouras,et al.  On the evaluation of dispersion coefficients from visualization experiments in artificial porous media , 2005 .

[12]  Louis J. Durlofsky,et al.  Analysis of the Brinkman equation as a model for flow in porous media , 1987 .

[13]  Michel Bakalowicz,et al.  Interpreting tracer breakthrough tailing in a conduit-dominated karstic aquifer , 2006 .

[14]  W. Jury,et al.  Determination of two‐dimensional laboratory‐scale dispersivities , 2004 .

[15]  S. Hassanizadeh,et al.  A non-linear theory of high-concentration-gradient dispersion in porous media , 1995 .

[16]  Analytical 1D dual-porosity equivalent solutions to 3D discrete single-continuum models. Application to karstic spring hydrograph modelling , 2002, 1108.5484.

[17]  M. Farber Dirichlet units and critical points of closed 1-forms , 1999 .

[18]  J. Bear Hydraulics of Groundwater , 1979 .

[19]  Paul Williams,et al.  Karst Geomorphology and Hydrology , 1989 .

[20]  N. Martys Improved approximation of the Brinkman equation using a lattice Boltzmann method , 2001 .

[21]  Vsevolod Laptev,et al.  Numerical solution of coupled flow in plain and porous media , 2003 .

[22]  J. M. Arandes,et al.  Application of a solute transport model under variable velocity conditions in a conduit flow aquifer: Olalde karst system, Basque Country, Spain , 1997 .

[23]  Nico Goldscheider,et al.  Solute and Colloid Transport in Karst Conduits under Low‐ and High‐Flow Conditions , 2008, Ground water.

[24]  Michael Wilson,et al.  Natural convection flow in a fluid-saturated porous medium enclosed by non-isothermal walls with heat generation , 2002 .

[25]  S. Dreiss Linear kernels for Karst Aquifers , 1982 .

[26]  P. Allemand,et al.  Meso-Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints , 2000 .

[27]  S. Dreiss Regional scale transport in a Karst Aquifer: 2. Linear systems and time moment analysis , 1989 .

[28]  J. Lin,et al.  Derivation of porous squeeze-film Reynolds equations using the Brinkman model and its application , 2001 .

[29]  Mir Hamid Reza Ghoreishy,et al.  Finite Element Modelling of Flow Through a Porous Medium Between Two Parallel Plates Using The Brinkman Equation , 2006 .

[30]  Chapter 11 – Plastics and composites , 1995 .

[31]  O. Atteia,et al.  Dispersion, retardation and scale effect in tracer breakthrough curves in karst conduits , 2001 .

[32]  Samuel Sideman,et al.  Temperature distribution within the left ventricular wall of the heart , 1985 .

[33]  C. C. Smart Artificial Tracer Techniques for the Determination of the Structure of Conduit Aquifers , 1988 .

[34]  Michael E. Barrett,et al.  A parsimonious model for simulation of flow and transport in a karst aquifer , 1996 .

[35]  Bouabid el Mansouri,et al.  Une approche numérique des périmètres de protection des captages des eaux souterraines , 1999 .

[36]  AN EXTENDED DOUBLE-POROSITY CONCEPT AS A PRACTICAL MODELLING APPROACH FOR A KARSTIFIED TERRAIN , 1993 .

[37]  Michael E. Barrett,et al.  Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA , 2003 .

[38]  A. Kim,et al.  Hydrodynamics of an ideal aggregate with quadratically increasing permeability. , 2005, Journal of Colloid and Interface Science.

[39]  Martin Olazar,et al.  Predicting travel times and transport characterization in karst conduits by analyzing tracer-breakthrough curves , 2007 .

[40]  Rudolf Liedl,et al.  Process‐based interpretation of tracer tests in carbonate aquifers , 2005, Ground water.

[41]  Henning Prommer,et al.  Effects of hydrodynamic dispersion on plume lengths for instantaneous bimolecular reactions , 2004 .

[42]  P. Ackerer,et al.  Modeling Variable Density Flow and Solute Transport in Porous Medium: 2. Re‐Evaluation of the Salt Dome Flow Problem , 1999 .

[43]  Laurent Eisenlohr,et al.  Numerical versus statistical modelling of natural response of a karst hydrogeological system , 1997 .

[44]  Fathi M. Allan,et al.  Fluid mechanics of the interface region between two porous layers , 2002, Appl. Math. Comput..

[45]  Massoud Kaviany,et al.  Non-Darcian effects on natural convection in porous media confined between horizontal cylinders , 1986 .

[46]  Malcolm S. Field,et al.  A two-region nonequilibrium model for solute transport in solution conduits in karstic aquifers , 2000 .

[47]  C. Chen,et al.  An integrated linear/non-linear flow model for the conduit-fissure-pore media in the karst triple void aquifer system , 2005 .

[48]  N. Goldscheider,et al.  Tracer tests in karst hydrogeology and speleology , 2008 .