Force-coupling method for flows with ellipsoidal particles

The force-coupling method, previously developed for spherical particles suspended in a liquid flow, is extended to ellipsoidal particles. In the limit of Stokes flow, there is an exact correspondence with known analytical results for isolated particles. More generally, the method is shown to provide good approximate results for the particle motion and the flow field both in viscous Stokes flow and at finite Reynolds number. This is demonstrated through comparison between fully resolved direct numerical simulations and results from the numerical implementation of the force-coupling method with a spectral/hp element scheme. The motion of settling ellipsoidal particles and neutrally buoyant particles in a Poiseuille flow are discussed.

[1]  Roland Glowinski,et al.  Addendum to: direct simulation of the motion of a settling ellipsoid in Newtonian fluid , 2003 .

[2]  G. B. Jeffery The motion of ellipsoidal particles immersed in a viscous fluid , 1922 .

[3]  E. J. Hinch,et al.  Inertial migration of a sphere in Poiseuille flow , 1989, Journal of Fluid Mechanics.

[4]  N. Patankar,et al.  A fast computation technique for the direct numerical simulation of rigid particulate flows , 2005 .

[5]  Alex Terray,et al.  Microfluidic Control Using Colloidal Devices , 2002, Science.

[6]  M. Maxey,et al.  Spiral swimming of an artificial micro-swimmer , 2008, Journal of Fluid Mechanics.

[7]  Daniel D. Joseph,et al.  Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows , 1994, Journal of Fluid Mechanics.

[8]  Howard H. Hu Direct simulation of flows of solid-liquid mixtures , 1996 .

[9]  Li-Shi Luo,et al.  Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows , 2003, Journal of Fluid Mechanics.

[10]  David W. M. Marr,et al.  Field-mediated self-assembly and actuation of highly parallel microfluidic devices , 2006 .

[11]  Xian Luo,et al.  Smoothed profile method for particulate flows: Error analysis and simulations , 2009, J. Comput. Phys..

[12]  G. Karniadakis,et al.  Microflows and Nanoflows: Fundamentals and Simulation , 2001 .

[13]  M. Maxey,et al.  Experimental verification of the force coupling method for particulate flows , 2002 .

[14]  L. Luo,et al.  Lateral Migration and Orientation of Elliptical Particles in Poiseuille Flows , 2002 .

[15]  T. E. TezduyarAerospace,et al.  3d Simulation of Fluid-particle Interactions with the Number of Particles Reaching 100 , 1996 .

[16]  A. Ladd,et al.  Inertial migration of neutrally buoyant particles in a square duct: An investigation of multiple equilibrium positions , 2006 .

[17]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[18]  G. Segré,et al.  Behaviour of macroscopic rigid spheres in Poiseuille flow Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams , 1962, Journal of Fluid Mechanics.

[19]  M. Maxey,et al.  Force-coupling method for particulate two-phase flow: stokes flow , 2003 .

[20]  J. M. Rallison,et al.  Note on the Faxén relations for a particle in Stokes flow , 1978, Journal of Fluid Mechanics.

[21]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[22]  Jean-Louis Viovy,et al.  Self-Assembled Magnetic Matrices for DNA Separation Chips , 2002, Science.

[23]  Howard Brenner,et al.  The Stokes resistance of an arbitrary particle , 1964 .

[24]  George Em Karniadakis,et al.  Modeling and optimization of colloidal micro-pumps , 2004 .

[25]  Howard H. Hu,et al.  Sedimentation of an ellipsoid inside an infinitely long tube at low and intermediate Reynolds numbers , 2006, Journal of Fluid Mechanics.

[26]  Olivier Simonin,et al.  Dynamics of bidisperse suspensions under Stokes flows: Linear shear flow and sedimentation , 2006 .

[27]  Martin R. Maxey,et al.  A fast method for particulate microflows , 2002 .

[28]  Roland Glowinski,et al.  Direct simulation of the motion of a settling ellipsoid in Newtonian fluid , 2002 .

[29]  Cyrus K. Aidun,et al.  Lattice Boltzmann simulation of solid particles suspended in fluid , 1995 .

[30]  C. Pozrikidis,et al.  Interception of two spheroidal particles in shear flow , 2006 .

[31]  John F. Brady,et al.  Accelerated Stokesian Dynamics simulations , 2001, Journal of Fluid Mechanics.

[32]  James J. Feng,et al.  Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid Part 1. Sedimentation , 1994, Journal of Fluid Mechanics.

[33]  Jing Wang,et al.  Migration of a sphere in tube flow , 2005, Journal of Fluid Mechanics.

[34]  J. Brady,et al.  Suspensions of prolate spheroids in Stokes flow , 2005 .

[35]  A. Wolff,et al.  Cell Sorting in Microfluidic Systems , 1998 .

[36]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[37]  Eric Darve,et al.  The growth of concentration fluctuations in dilute dispersions of orientable and deformable particles under sedimentation , 2006, Journal of Fluid Mechanics.

[38]  G. Segré,et al.  Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation , 1962, Journal of Fluid Mechanics.

[39]  George Karniadakis,et al.  Spectral element/force coupling method: application to colloidal micro-devices and self-assembled particle structures in three-dimensional domains , 2004 .

[40]  Martin R. Maxey,et al.  The settling of nonspherical particles in a cellular flow field , 1991 .

[41]  Elisabeth Guazzelli,et al.  Inertial migration of rigid spherical particles in Poiseuille flow , 2004, Journal of Fluid Mechanics.

[42]  J. Squier,et al.  Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. , 2006, Lab on a chip.

[43]  A. Ladd,et al.  Lattice-Boltzmann Simulations of Particle-Fluid Suspensions , 2001 .

[44]  M. Uhlmann An immersed boundary method with direct forcing for the simulation of particulate flows , 2005, 1809.08170.

[45]  Evgeny S. Asmolov,et al.  The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number , 1999, Journal of Fluid Mechanics.

[46]  C. Pozrikidis,et al.  Orbiting motion of a freely suspended spheroid near a plane wall , 2005, Journal of Fluid Mechanics.

[47]  Patrick S Doyle,et al.  Transition from two-dimensional to three-dimensional behavior in the self-assembly of magnetorheological fluids confined in thin slits. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Eric S. G. Shaqfeh,et al.  The instability of a dispersion of sedimenting spheroids , 1989, Journal of Fluid Mechanics.

[49]  Andrea Prosperetti,et al.  A second-order method for three-dimensional particle simulation , 2005 .

[50]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[51]  Mark A. Hayes,et al.  Active Control of Dynamic Supraparticle Structures in Microchannels , 2001 .

[52]  John F. Brady,et al.  STOKESIAN DYNAMICS , 2006 .

[53]  Chih-Ming Ho,et al.  MICRO-ELECTRO-MECHANICAL-SYSTEMS (MEMS) AND FLUID FLOWS , 1998 .

[54]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[55]  Sarah L. Dance,et al.  Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow , 2003 .

[56]  Dong Liu,et al.  Spectral distributed Lagrange multiplier method: algorithm and benchmark tests , 2004 .

[57]  R. Glowinski,et al.  A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows , 2000 .

[58]  M. Maxey,et al.  Localized force representations for particles sedimenting in Stokes flow , 2001 .

[59]  Alexander Z. Zinchenko,et al.  Dynamic simulation of spheroid motion between two parallel plane walls in low-Reynolds-number Poiseuille flow , 2006, Journal of Fluid Mechanics.

[60]  Martin R. Maxey,et al.  CHAOTIC MOTION OF NONSPHERICAL PARTICLES SETTLING IN A CELLULAR FLOW FIELD , 1997 .

[61]  John F. Brady,et al.  Suspensions of prolate spheroids in Stokes flow. Part 1. Dynamics of a finite number of particles in an unbounded fluid , 1993, Journal of Fluid Mechanics.

[62]  Michael R. King,et al.  Three-dimensional simulations of a platelet-shaped spheroid near a wall in shear flow , 2005 .

[63]  Howard Brenner,et al.  The Stokes resistance of an arbitrary particleIV Arbitrary fields of flow , 1964 .

[64]  G. Karniadakis,et al.  Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi , 2006, Proceedings of the National Academy of Sciences.

[65]  Howard H. Hu,et al.  Direct numerical simulations of fluid-solid systems using the arbitrary Langrangian-Eulerian technique , 2001 .

[66]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[67]  C. Aidun,et al.  Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation , 1998, Journal of Fluid Mechanics.

[68]  Sangtae Kim,et al.  Microhydrodynamics: Principles and Selected Applications , 1991 .