EXOZODIACAL DUST LEVELS FOR NEARBY MAIN-SEQUENCE STARS: A SURVEY WITH THE KECK INTERFEROMETER NULLER

The Keck Interferometer Nuller (KIN) was used to survey 25 nearby main-sequence stars in the mid-infrared, in order to assess the prevalence of warm circumstellar (exozodiacal) dust around nearby solar-type stars. The KIN measures circumstellar emission by spatially blocking the star but transmitting the circumstellar flux in a region typically 0.1-4 AU from the star. We find one significant detection (η Crv), two marginal detections (γ Oph and α Aql), and 22 clear non-detections. Using a model of our own solar system's zodiacal cloud, scaled to the luminosity of each target star, we estimate the equivalent number of target zodis needed to match our observations. Our three zodi detections are η Crv (1250 ± 260), γ Oph (200 ± 80), and α Aql (600 ± 200), where the uncertainties are 1σ. The 22 non-detected targets have an ensemble weighted average consistent with zero, with an average individual uncertainty of 160 zodis (1σ). These measurements represent the best limits to date on exozodi levels for a sample of nearby main-sequence stars. A statistical analysis of the population of 23 stars not previously known to contain circumstellar dust (excluding η Crv and γ Oph) suggests that, if the measurement errors are uncorrelated (for which we provide evidence) and if these 23 stars are representative of a single class with respect to the level of exozodi brightness, the mean exozodi level for the class is <150 zodis (3σ upper limit, corresponding to 99% confidence under the additional assumption that the measurement errors are Gaussian). We also demonstrate that this conclusion is largely independent of the shape and mean level of the (unknown) true underlying exozodi distribution.

[1]  J. Valenti,et al.  Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs , 2005 .

[2]  Harold F. Levison,et al.  COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS , 2009, 0909.4322.

[3]  Bertrand Mennesson,et al.  AN INTERFEROMETRIC STUDY OF THE FOMALHAUT INNER DEBRIS DISK. I. NEAR-INFRARED DETECTION OF HOT DUST WITH VLTI/VINCI , 2009, 0908.3133.

[4]  et al,et al.  New Debris Disks around Nearby Main-Sequence Stars: Impact on the Direct Detection of Planets , 2006, astro-ph/0611682.

[5]  E. L. Wright,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. II. Model of the Interplanetary Dust Cloud , 1997, astro-ph/9806250.

[6]  Grant Kennedy,et al.  Resolving debris discs in the far-infrared: Early highlights from the DEBRIS survey , 2010, 1005.5147.

[7]  D. Mawet,et al.  NEW CONSTRAINTS ON COMPANIONS AND DUST WITHIN A FEW AU OF VEGA , 2011 .

[8]  K. Y. L. Su,et al.  EXPLORATIONS BEYOND THE SNOW LINE: SPITZER/IRS SPECTRA OF DEBRIS DISKS AROUND SOLAR-TYPE STARS , 2009, 0909.0058.

[9]  et al,et al.  Frequency of Debris Disks around Solar-Type Stars: First Results from a Spitzer MIPS Survey , 2005, astro-ph/0509199.

[10]  Eugene Serabyn,et al.  Nulling interferometry: symmetry requirements and experimental results , 2000, Astronomical Telescopes and Instrumentation.

[11]  G. Rieke,et al.  The Exceptionally Large Debris Disk around γ Ophiuchi , 2008, 0804.2924.

[12]  Marc Ollivier,et al.  Direct detection and characterization of extrasolar planets: The Mariotti space interferometer , 2005 .

[13]  M. M. Colavita,et al.  Keck Interferometer nuller instrument performance , 2010, Astronomical Telescopes + Instrumentation.

[14]  Submillimeter Images of a Dusty Kuiper Belt around η Corvi , 2004, astro-ph/0411061.

[15]  Gautam Vasisht,et al.  Keck Interferometer Nuller Data Reduction and On-Sky Performance , 2009 .

[16]  K. Y. L. Su,et al.  accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 2/19/04 DEBRIS DISK EVOLUTION AROUND A STARS , 2006 .

[17]  David E. Trilling,et al.  Decay of Planetary Debris Disks , 2005 .

[18]  IRS Spectra of Solar-Type Stars: A Search for Asteroid Belt Analogs , 2006, astro-ph/0601468.

[19]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[20]  Bertrand Mennesson,et al.  51 OPHIUCHUS: A POSSIBLE BETA PICTORIS ANALOG MEASURED WITH THE KECK INTERFEROMETER NULLER , 2009, 0909.1821.

[21]  R. MacQueen,et al.  Solar Coronal Dust Scattering in the Infrared , 1995 .

[22]  S. Beckwith Detecting Life-bearing Extrasolar Planets with Space Telescopes , 2007, 0710.1444.

[23]  Mark R. Kidger,et al.  Spectral Irradiance Calibration in the Infrared. X. A Self-Consistent Radiometric All-Sky Network of Absolutely Calibrated Stellar Spectra , 1999 .

[24]  Jason T. Wright,et al.  Chromospheric Ca II Emission in Nearby F, G, K, and M Stars , 2004, astro-ph/0402582.

[25]  S. Wolf,et al.  Signatures of planets in protoplanetary and debris disks , 2007 .

[26]  Marc J. Kuchner,et al.  The Detectability of Exo-Earths and Super-Earths Via Resonant Signatures in Exozodiacal Clouds , 2008, 0810.2702.

[27]  M. McElwain,et al.  Characterization of Dusty Debris Disks: The IRAS and Hipparcos Catalogs , 2006, astro-ph/0609555.

[28]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[29]  G. Montagnier,et al.  A near-infrared interferometric survey of debris disc stars. II. CHARA/FLUOR observations of six ear , 2008, 0806.4936.

[30]  H. McAlister,et al.  DUST IN THE INNER REGIONS OF DEBRIS DISKS AROUND A STARS , 2008, 0810.3701.

[31]  K. Rice,et al.  Protostars and Planets V , 2005 .

[33]  B. Zuckerman Dusty Circumstellar Disks , 2001 .

[34]  R. Smith,et al.  Resolving the hot dust around HD69830 and η Corvi with MIDI and VISIR , 2009, 0906.3704.

[35]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[36]  Marc J. Kuchner,et al.  COLLISIONAL GROOMING MODELS OF THE KUIPER BELT DUST CLOUD , 2010, 1008.0904.

[37]  K. H. Kim,et al.  Spitzer IRS Spectroscopy of IRAS-discovered Debris Disks , 2006, astro-ph/0605277.

[39]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[40]  H McAlister,et al.  Imaging the Surface of Altair , 2007, Science.

[41]  Dale J. Fixsen,et al.  The Zodiacal Emission Spectrum as Determined by COBE and Its Implications , 2002 .

[42]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[43]  J. R. Houck,et al.  Origin of the Solar System dust bands discovered by IRAS , 1984, Nature.

[44]  S. T. Ridgway,et al.  Circumstellar material in the Vega inner system revealed by CHARA/FLUOR , 2006 .

[45]  F. Wildi,et al.  Adaptive Optics Nulling Interferometric Constraints on the Mid-Infrared Exozodiacal Dust Emission around Vega , 2004, astro-ph/0406587.

[46]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[47]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[48]  F. J. Low,et al.  DISCOVERY OF A SHELL AROUND ALPHA-LYRAE , 1984 .

[49]  et al.,et al.  The Visual Orbit of Pegasi , 1999 .

[50]  M. Mark Colavita Simultaneous Water Vapor and Dry Air Path Length Measurements with the Keck Interferometer Nuller , 2010 .