Molecular genetics and imaging technologies for circuit-based neuroanatomy

Brain function emerges from the morphologies, spatial organization and patterns of connectivity established between diverse sets of neurons. Historically, the notion that neuronal structure predicts function stemmed from classic histological staining and neuronal tracing methods. Recent advances in molecular genetics and imaging technologies have begun to reveal previously unattainable details about patterns of functional circuit connectivity and the subcellular organization of synapses in the living brain. This sophisticated molecular and genetic 'toolbox', coupled with new methods in optical and electron microscopy, provides an expanding array of techniques for probing neural anatomy and function.

[1]  R. Tsien,et al.  The Dynamic Control of Kiss-And-Run and Vesicular Reuse Probed with Single Nanoparticles , 2009, Science.

[2]  P. J. Sjöström,et al.  Dendritic excitability and synaptic plasticity. , 2008, Physiological reviews.

[3]  S. Hell,et al.  Fluorescence nanoscopy by ground-state depletion and single-molecule return , 2008, Nature Methods.

[4]  Paul Young,et al.  Single-neuron labeling with inducible Cre-mediated knockout in transgenic mice , 2008, Nature Neuroscience.

[5]  Murtaza Z Mogri,et al.  Optical Deconstruction of Parkinsonian Neural Circuitry , 2009, Science.

[6]  Suliana Manley,et al.  Putting super-resolution fluorescence microscopy to work , 2008, Nature Methods.

[7]  Kristen M. Harris,et al.  Plasticity-Induced Growth of Dendritic Spines by Exocytic Trafficking from Recycling Endosomes , 2006, Neuron.

[8]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[9]  Michael D. Ehlers,et al.  Structural plasticity with preserved topology in the postsynaptic protein network , 2008, Proceedings of the National Academy of Sciences.

[10]  Arne Stoschek,et al.  The architecture of active zone material at the frog's neuromuscular junction , 2001, Nature.

[11]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[12]  Benjamin R Arenkiel,et al.  Genetic control of neuronal activity in mice conditionally expressing TRPV1 , 2008, Nature Methods.

[13]  K Dane Wittrup,et al.  Monovalent, reduced-size quantum dots for imaging receptors on living cells , 2008, Nature Methods.

[14]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[15]  Matt Wachowiak,et al.  In Vivo Imaging of Neuronal Activity by Targeted Expression of a Genetically Encoded Probe in the Mouse , 2004, Neuron.

[16]  C. Levinthal,et al.  Three-dimensional computer reconstruction of neurons and neuronal assemblies. , 1979, Annual review of biophysics and bioengineering.

[17]  Adi Mizrahi,et al.  Dendritic development and plasticity of adult-born neurons in the mouse olfactory bulb , 2007, Nature Neuroscience.

[18]  K. Thorn,et al.  Real-Time Imaging of Discrete Exocytic Events Mediating Surface Delivery of AMPA Receptors , 2007, The Journal of Neuroscience.

[19]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[20]  J. Lippincott-Schwartz,et al.  Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure , 2009, Proceedings of the National Academy of Sciences.

[21]  S. Hell Microscopy and its focal switch , 2008, Nature Methods.

[22]  Cori Bargmann,et al.  GFP Reconstitution Across Synaptic Partners (GRASP) Defines Cell Contacts and Synapses in Living Nervous Systems , 2008, Neuron.

[23]  H. Sebastian Seung,et al.  Reading the Book of Memory: Sparse Sampling versus Dense Mapping of Connectomes , 2009, Neuron.

[24]  S. Palay,et al.  THE FINE STRUCTURE OF NEURONS , 1955, The Journal of biophysical and biochemical cytology.

[25]  G. Knott,et al.  Serial Section Scanning Electron Microscopy of Adult Brain Tissue Using Focused Ion Beam Milling , 2008, The Journal of Neuroscience.

[26]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[27]  Agard,et al.  I5M: 3D widefield light microscopy with better than 100 nm axial resolution , 1999, Journal of microscopy.

[28]  Alexander Borst,et al.  Contour-propagation algorithms for semi-automated reconstruction of neural processes , 2008, Journal of Neuroscience Methods.

[29]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[30]  E. Callaway,et al.  Selective and Quickly Reversible Inactivation of Mammalian Neurons In Vivo Using the Drosophila Allatostatin Receptor , 2006, Neuron.

[31]  S. Hell,et al.  Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[32]  B Sakmann,et al.  Patch clamp techniques for studying ionic channels in excitable membranes. , 1984, Annual review of physiology.

[33]  M. Capecchi,et al.  Altering the genome by homologous recombination. , 1989, Science.

[34]  David J. Anderson,et al.  Reversible Silencing of Neuronal Excitability in Behaving Mice by a Genetically Targeted, Ivermectin-Gated Cl− Channel , 2007, Neuron.

[35]  J. Bourne,et al.  Uniform Serial Sectioning for Transmission Electron Microscopy , 2006, The Journal of Neuroscience.

[36]  Tristan D. McClure-Begley,et al.  In Vivo Activation of Midbrain Dopamine Neurons via Sensitized, High-Affinity α6∗ Nicotinic Acetylcholine Receptors , 2008, Neuron.

[37]  R. Tsien,et al.  Quantum dots provide an optical signal specific to full collapse fusion of synaptic vesicles , 2007, Proceedings of the National Academy of Sciences.

[38]  Kevin L. Briggman,et al.  3D structural imaging of the brain with photons and electrons , 2008, Current Opinion in Neurobiology.

[39]  Karel Svoboda,et al.  Rapid and Reversible Chemical Inactivation of Synaptic Transmission in Genetically Targeted Neurons , 2005, Neuron.

[40]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[41]  J. C. Anderson,et al.  Map of the synapses formed with the dendrites of spiny stellate neurons of cat visual cortex , 1994, The Journal of comparative neurology.

[42]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[43]  J. Henley,et al.  Lateral Diffusion Drives Constitutive Exchange of AMPA Receptors at Dendritic Spines and Is Regulated by Spine Morphology , 2006, The Journal of Neuroscience.

[44]  T. A. Ryan,et al.  Synaptic Vesicles Interchange Their Membrane Proteins with a Large Surface Reservoir during Recycling , 2006, Neuron.

[45]  J. Bourne,et al.  Balancing structure and function at hippocampal dendritic spines. , 2008, Annual review of neuroscience.

[46]  Benjamin R. Arenkiel,et al.  In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2 , 2007, Neuron.

[47]  J. Sanes,et al.  Ome sweet ome: what can the genome tell us about the connectome? , 2008, Current Opinion in Neurobiology.

[48]  Daniel Choquet,et al.  New Concepts in Synaptic Biology Derived from Single-Molecule Imaging , 2008, Neuron.

[49]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[50]  Kevin L. Briggman,et al.  Towards neural circuit reconstruction with volume electron microscopy techniques , 2006, Current Opinion in Neurobiology.

[51]  T. Bonhoeffer,et al.  Live-cell imaging of dendritic spines by STED microscopy , 2008, Proceedings of the National Academy of Sciences.

[52]  Stefan W. Hell,et al.  Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation , 1992 .

[53]  M. Ehlers,et al.  Diffusional Trapping of GluR1 AMPA Receptors by Input-Specific Synaptic Activity , 2007, Neuron.

[54]  Karel Svoboda,et al.  The Spread of Ras Activity Triggered by Activation of a Single Dendritic Spine , 2008, Science.

[55]  P. Greengard,et al.  A Translational Profiling Approach for the Molecular Characterization of CNS Cell Types , 2008, Cell.

[56]  W. Denk,et al.  Imaging in vivo: watching the brain in action , 2008, Nature Reviews Neuroscience.

[57]  Volker Busskamp,et al.  Genetically timed, activity-sensor and rainbow transsynaptic viral tools , 2009, Nature Methods.

[58]  J. Wess,et al.  Engineering GPCR signaling pathways with RASSLs , 2008, Nature Methods.

[59]  J. Livet,et al.  A technicolour approach to the connectome , 2008, Nature Reviews Neuroscience.

[60]  Kevan A. C. Martin,et al.  Protracted Synaptogenesis after Activity-Dependent Spinogenesis in Hippocampal Neurons , 2007, The Journal of Neuroscience.

[61]  David J. Anderson,et al.  Subregion- and Cell Type–Restricted Gene Knockout in Mouse Brain , 1996, Cell.

[62]  K. Svoboda,et al.  Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience , 2006, Neuron.

[63]  Stephen J. Smith,et al.  Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits , 2007, Neuron.

[64]  E. Callaway Transneuronal circuit tracing with neurotropic viruses , 2008, Current Opinion in Neurobiology.

[65]  Daniel L. Farkas,et al.  Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation , 1993, Nature.

[66]  P. Sterling,et al.  Toward a functional architecture of the retina: serial reconstruction of adjacent ganglion cells. , 1980, Science.

[67]  L. Luo,et al.  Mosaic Analysis with Double Markers in Mice , 2005, Cell.

[68]  X. Zhuang,et al.  Whole cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution , 2008, Nature Methods.

[69]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Bryant B. Chhun,et al.  Super-Resolution Video Microscopy of Live Cells by Structured Illumination , 2009, Nature Methods.

[71]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[72]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[73]  N. Ryba,et al.  The Receptors for Mammalian Sweet and Umami Taste , 2003, Cell.

[74]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[75]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[76]  Mark Bates,et al.  Super-resolution fluorescence microscopy. , 2009, Annual review of biochemistry.

[77]  Karel Svoboda,et al.  Rapid Redistribution of Synaptic PSD-95 in the Neocortex In Vivo , 2006, PLoS biology.

[78]  Mark H. Ellisman,et al.  Serial Section Electron Tomography: A Method for Three-Dimensional Reconstruction of Large Structures , 1994, NeuroImage.

[79]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[80]  M. Ehlers,et al.  Glutamate Receptor Dynamics in Dendritic Microdomains , 2008, Neuron.

[81]  Tsien Jz,et al.  Behavioral genetics: subregion- and cell type-restricted gene knockout in mouse brain. , 1998, Pathologie-biologie.

[82]  Susumu Tonegawa,et al.  Transgenic Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal Learning , 2008, Science.

[83]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[84]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[85]  S. Hell,et al.  Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit , 1995 .

[86]  Jian Xu,et al.  Two Pathways of Synaptic Vesicle Retrieval Revealed by Single-Vesicle Imaging , 2009, Neuron.

[87]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[88]  William Wisden,et al.  From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors , 2007, Nature Neuroscience.

[89]  Seok-Jin R. Lee,et al.  Activation of CaMKII in single dendritic spines during long-term potentiation , 2009, Nature.

[90]  C. Branda,et al.  Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. , 2004, Developmental cell.

[91]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[92]  Ian R. Wickersham,et al.  Retrograde neuronal tracing with a deletion-mutant rabies virus , 2007, Nature Methods.

[93]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[94]  J. Sibarita,et al.  Surface Trafficking of Neurotransmitter Receptor: Comparison between Single-Molecule/Quantum Dot Strategies , 2007, The Journal of Neuroscience.

[95]  K. Martin,et al.  Map of the synapses onto layer 4 basket cells of the primary visual cortex of the cat , 1997, The Journal of comparative neurology.