Normalized B-basis of the space of trigonometric polynomials and curve design

A normalized B-basis of the space of trigonometric polynomials of degree n is presented. Some interesting properties of the basis functions are given. Based on the basis, symmetric trigonometric polynomial curves like Bezier curves are constructed. The trigonometric polynomial curves present the shape of their control polygons well. Thus the theoretics and methods are proposed for curve representation of the trigonometric polynomial space. By adding additional control points, the given graph examples show that the trigonometric polynomial curves are nearer their control polygons than the Bezier curves for the same parametric variable and the same degree.

[1]  G. Walz Identities for trigonometric B-splines with an application to curve design , 1997 .

[2]  Tim N. T. Goodman Inflections on curves in two and three dimensions , 1991, Comput. Aided Geom. Des..

[3]  Xuli Han Quadratic trigonometric polynomial curves concerning local control , 2006 .

[4]  Xi-An Han,et al.  Shape analysis of cubic trigonometric Bézier curves with a shape parameter , 2010, Appl. Math. Comput..

[5]  Xuli Han,et al.  Cubic trigonometric polynomial curves with a shape parameter , 2004, Comput. Aided Geom. Des..

[6]  T. Lyche,et al.  A stable recurrence relation for trigonometric B-splines , 1979 .

[7]  Guozhao Wang,et al.  A class of Bézier-like curves , 2003, Comput. Aided Geom. Des..

[8]  T. Goodman Shape preserving representations , 1989 .

[9]  Javier Sánchez-Reyes,et al.  Harmonic rational Bézier curves, p-Bézier curves and trigonometric polynomials , 1998, Comput. Aided Geom. Des..

[10]  Guozhao Wang,et al.  Optimal properties of the uniform algebraic trigonometric B-splines , 2006, Comput. Aided Geom. Des..

[11]  Guozhao Wang,et al.  Trigonometric polynomial B-spline with shape parameter , 2004 .

[12]  Marie-Laurence Mazure,et al.  Mixed hyperbolic/trigonometric spaces for design , 2012, Comput. Math. Appl..

[13]  Yuanpeng Zhu,et al.  Curve construction based on five trigonometric blending functions , 2012 .

[14]  Juan Manuel Peña,et al.  Representing circles with five control points , 2003, Comput. Aided Geom. Des..

[15]  汪国昭,et al.  Uniform trigonometric polynomial B—spline curves , 2002 .

[16]  Juan Manuel Peña,et al.  Shape preserving representations and optimality of the Bernstein basis , 1993, Adv. Comput. Math..

[17]  Marie-Laurence Mazure,et al.  Chebyshev-Bernstein bases , 1999, Comput. Aided Geom. Des..

[18]  Juan Manuel Peña,et al.  A general class of Bernstein-like bases , 2007, Comput. Math. Appl..

[19]  Juan Manuel Peña,et al.  Totally positive bases for shape preserving curve design and optimality of B-splines , 1994, Comput. Aided Geom. Des..

[20]  Juan Manuel Peña,et al.  Shape preserving representations for trigonometric polynomial curves , 1997, Comput. Aided Geom. Des..

[21]  Guido Walz,et al.  Trigonometric Bézier and Stancu polynomials over intervals and triangles , 1997, Comput. Aided Geom. Des..

[22]  Marie-Laurence Mazure,et al.  Chebyshev Spaces and Bernstein Bases , 2005 .

[23]  Tim N. T. Goodman,et al.  Shape preserving properties of the generalised ball basis , 1991, Comput. Aided Geom. Des..

[24]  Xuli Han,et al.  Quadratic trigonometric polynomial curves with a shape parameter , 2002, Comput. Aided Geom. Des..

[25]  Juan Manuel Peña,et al.  A basis of C-Bézier splines with optimal properties , 2002, Comput. Aided Geom. Des..