Normalized B-basis of the space of trigonometric polynomials and curve design
暂无分享,去创建一个
[1] G. Walz. Identities for trigonometric B-splines with an application to curve design , 1997 .
[2] Tim N. T. Goodman. Inflections on curves in two and three dimensions , 1991, Comput. Aided Geom. Des..
[3] Xuli Han. Quadratic trigonometric polynomial curves concerning local control , 2006 .
[4] Xi-An Han,et al. Shape analysis of cubic trigonometric Bézier curves with a shape parameter , 2010, Appl. Math. Comput..
[5] Xuli Han,et al. Cubic trigonometric polynomial curves with a shape parameter , 2004, Comput. Aided Geom. Des..
[6] T. Lyche,et al. A stable recurrence relation for trigonometric B-splines , 1979 .
[7] Guozhao Wang,et al. A class of Bézier-like curves , 2003, Comput. Aided Geom. Des..
[8] T. Goodman. Shape preserving representations , 1989 .
[9] Javier Sánchez-Reyes,et al. Harmonic rational Bézier curves, p-Bézier curves and trigonometric polynomials , 1998, Comput. Aided Geom. Des..
[10] Guozhao Wang,et al. Optimal properties of the uniform algebraic trigonometric B-splines , 2006, Comput. Aided Geom. Des..
[11] Guozhao Wang,et al. Trigonometric polynomial B-spline with shape parameter , 2004 .
[12] Marie-Laurence Mazure,et al. Mixed hyperbolic/trigonometric spaces for design , 2012, Comput. Math. Appl..
[13] Yuanpeng Zhu,et al. Curve construction based on five trigonometric blending functions , 2012 .
[14] Juan Manuel Peña,et al. Representing circles with five control points , 2003, Comput. Aided Geom. Des..
[15] 汪国昭,et al. Uniform trigonometric polynomial B—spline curves , 2002 .
[16] Juan Manuel Peña,et al. Shape preserving representations and optimality of the Bernstein basis , 1993, Adv. Comput. Math..
[17] Marie-Laurence Mazure,et al. Chebyshev-Bernstein bases , 1999, Comput. Aided Geom. Des..
[18] Juan Manuel Peña,et al. A general class of Bernstein-like bases , 2007, Comput. Math. Appl..
[19] Juan Manuel Peña,et al. Totally positive bases for shape preserving curve design and optimality of B-splines , 1994, Comput. Aided Geom. Des..
[20] Juan Manuel Peña,et al. Shape preserving representations for trigonometric polynomial curves , 1997, Comput. Aided Geom. Des..
[21] Guido Walz,et al. Trigonometric Bézier and Stancu polynomials over intervals and triangles , 1997, Comput. Aided Geom. Des..
[22] Marie-Laurence Mazure,et al. Chebyshev Spaces and Bernstein Bases , 2005 .
[23] Tim N. T. Goodman,et al. Shape preserving properties of the generalised ball basis , 1991, Comput. Aided Geom. Des..
[24] Xuli Han,et al. Quadratic trigonometric polynomial curves with a shape parameter , 2002, Comput. Aided Geom. Des..
[25] Juan Manuel Peña,et al. A basis of C-Bézier splines with optimal properties , 2002, Comput. Aided Geom. Des..