The process of genome shrinkage in the obligate symbiont Buchnera aphidicola

BackgroundVery small genomes have evolved repeatedly in eubacterial lineages that have adopted obligate associations with eukaryotic hosts. Complete genome sequences have revealed that small genomes retain very different gene sets, raising the question of how final genome content is determined. To examine the process of genome reduction, the tiny genome of the endosymbiont Buchnera aphidicola was compared to the larger ancestral genome, reconstructed on the basis of the phylogenetic distribution of gene orthologs among fully sequenced relatives of Escherichia coli and Buchnera.ResultsThe reconstructed ancestral genome contained 2,425 open reading frames (ORFs). The Buchnera genome, containing 564 ORFs, consists of 153 fragments of 1-34 genes that are syntenic with reconstructed ancestral regions. On the basis of this reconstruction, 503 genes were eliminated within syntenic fragments, and 1,403 genes were lost from the gaps between syntenic fragments, probably in connection with genome rearrangements. Lost regions are sometimes large, and often span functionally unrelated genes. In addition, individual genes and regulatory regions have been lost or eroded. For the categories of DNA repair genes and rRNA genes, most lost loci fall in regions between syntenic fragments. This history of gene loss is reflected in the sequences of intergenic spacers at positions where genes were once present.ConclusionsThe most plausible interpretation of this reconstruction is that Buchnera lost many genes through the fixation of large deletions soon after the acquisition of an obligate endosymbiotic lifestyle. An implication is that final genome composition may be partly the chance outcome of initial deletions and that neighboring genes influence the likelihood of loss of particular genes and pathways.

[1]  T. Traut,et al.  A minimal gene set for cellular life derived by comparison of complete bacterial genomes , 1998 .

[2]  D. K. Hawley,et al.  Compilation and analysis of Escherichia coli promoter DNA sequences. , 1983, Nucleic acids research.

[3]  H. Ochman,et al.  Molecular archaeology of the Escherichia coli genome. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[4]  N. Moran,et al.  Decoupling of Genome Size and Sequence Divergence in a Symbiotic Bacterium , 2000, Journal of bacteriology.

[5]  R. Gibbs,et al.  PipMaker--a web server for aligning two genomic DNA sequences. , 2000, Genome research.

[6]  D. Roff On Being the Right Size , 1981, The American Naturalist.

[7]  Arcady R. Mushegian,et al.  Sequencing and analysis of bacterial genomes , 1996, Current Biology.

[8]  E. Stackebrandt,et al.  Systematic relationships and cospeciation of bacterial endosymbionts and their carpenter ant host species: proposal of the new taxon Candidatus Blochmannia gen. nov. , 2000, International journal of systematic and evolutionary microbiology.

[9]  O. White,et al.  Global transposon mutagenesis and a minimal Mycoplasma genome. , 1999, Science.

[10]  F. Studier,et al.  Mutations of bacteriophage T7 that affect initiation of synthesis of the gene 0.3 protein. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[11]  T. Gingeras,et al.  Comparing genomes within the species Mycobacterium tuberculosis. , 2001, Genome research.

[12]  J. Andersson,et al.  Genome degradation is an ongoing process in Rickettsia. , 1999, Molecular biology and evolution.

[13]  J. Andersson,et al.  Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes. , 2001, Molecular biology and evolution.

[14]  S. Salzberg,et al.  Evidence for symmetric chromosomal inversions around the replication origin in bacteria , 2000, Genome Biology.

[15]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[16]  P. Bork,et al.  Measuring genome evolution. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  B. Barrell,et al.  Massive gene decay in the leprosy bacillus , 2001, Nature.

[18]  S. Andersson,et al.  Mutualists and parasites: how to paint yourself into a (metabolic) corner , 2001, FEBS letters.

[19]  S. Casjens,et al.  The diverse and dynamic structure of bacterial genomes. , 1998, Annual review of genetics.

[20]  H. Ochman,et al.  Evolutionary dynamics of full genome content in Escherichia coli , 2000, The EMBO journal.

[21]  A. Moya,et al.  Putative evolutionary origin of plasmids carrying the genes involved in leucine biosynthesis in Buchnera aphidicola (endosymbiont of aphids) , 1997, Journal of bacteriology.

[22]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO 1 , an opportunistic pathogen , 2000 .

[23]  N. Moran Accelerated evolution and Muller's rachet in endosymbiotic bacteria. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[24]  N. Moran,et al.  Lifestyle evolution in symbiotic bacteria: insights from genomics. , 2000, Trends in ecology & evolution.

[25]  N. Moran,et al.  Decay of mutualistic potential in aphid endosymbionts through silencing of biosynthetic loci: Buchnera of Diuraphis , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  P. Baumann,et al.  Sequence Analysis of a 34.7-kb DNA Segment from the Genome of Buchnera aphidicola (Endosymbiont of Aphids) Containing groEL, dnaA, the atp operon, gidA, and rho , 1998, Current Microbiology.

[27]  T. Sicheritz-Pontén,et al.  The genome sequence of Rickettsia prowazekii and the origin of mitochondria , 1998, Nature.

[28]  M. Wösten Eubacterial sigma-factors. , 1998, FEMS microbiology reviews.

[29]  M. Hattori,et al.  Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS , 2000, Nature.

[30]  E V Koonin,et al.  How many genes can make a cell: the minimal-gene-set concept. , 2000, Annual review of genomics and human genetics.

[31]  M. Kozak Initiation of translation in prokaryotes and eukaryotes. , 1999, Gene.

[32]  N. Moran,et al.  A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  P. Baumann,et al.  Pea aphid symbiont relationships established by analysis of 16S rRNAs , 1989, Journal of bacteriology.

[34]  N. Moran,et al.  Evidence for genetic drift in endosymbionts (Buchnera): analyses of protein-coding genes. , 1999, Molecular biology and evolution.

[35]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[36]  C. Beard,et al.  Genome Size Determination and Coding Capacity of Sodalis glossinidius, an Enteric Symbiont of Tsetse Flies, as Revealed by Hybridization to Escherichia coliGene Arrays , 2001, Journal of bacteriology.

[37]  C. Kurland,et al.  Reductive evolution of resident genomes. , 1998, Trends in microbiology.

[38]  S. Salzberg,et al.  DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae , 2000, Nature.

[39]  J. Maniloff,et al.  The minimal cell genome: "on being the right size". , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[40]  N. Moran,et al.  Deletional bias and the evolution of bacterial genomes. , 2001, Trends in genetics : TIG.

[41]  Stephen L. Gasior,et al.  Assembly of RecA-like recombinases: Distinct roles for mediator proteins in mitosis and meiosis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  S. Salzberg,et al.  Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. , 2000, Nucleic acids research.

[43]  M. Suyama,et al.  Evolution of prokaryotic gene order: genome rearrangements in closely related species. , 2001, Trends in genetics : TIG.

[44]  E. Tillier,et al.  Genome rearrangement by replication-directed translocation , 2000, Nature Genetics.

[45]  H. Hilbert,et al.  Comparative analysis of the genomes of the bacteria Mycoplasma pneumoniae and Mycoplasma genitalium. , 1997, Nucleic acids research.

[46]  H. Ishikawa,et al.  Intracellular Bacterial Symbionts of Aphids Possess Many Genomic Copies per Bacterium , 1999, Journal of Molecular Evolution.

[47]  Serap Aksoy,et al.  A novel application of gene arrays: Escherichia coli array provides insight into the biology of the obligate endosymbiont of tsetse flies , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[48]  W Miller,et al.  Comparison of the Escherichia coli K-12 genome with sampled genomes of a Klebsiella pneumoniae and three salmonella enterica serovars, Typhimurium, Typhi and Paratyphi. , 2000, Nucleic acids research.

[49]  J. Andersson,et al.  Insights into the evolutionary process of genome degradation. , 1999, Current opinion in genetics & development.

[50]  A. Mushegian,et al.  The minimal genome concept. , 1999, Current opinion in genetics & development.

[51]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[52]  B. Godelle,et al.  Reducing the genome size of organelles favours gene transfer to the nucleus. , 2001, Trends in ecology & evolution.

[53]  C. V. von Dohlen,et al.  Phylogenetic characterization and molecular evolution of bacterial endosymbionts in psyllids (Hemiptera: Sternorrhyncha). , 1998, Molecular biology and evolution.

[54]  C. V. von Dohlen,et al.  Psyllid endosymbionts exhibit patterns of co‐speciation with hosts and destabilizing substitutions in ribosomal RNA , 2001, Insect molecular biology.

[55]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.