Valley coherent exciton-polaritons in a monolayer semiconductor

Two-dimensional transition metal dichalcogenides (TMDs) provide a unique possibility to generate and read-out excitonic valley coherence using linearly polarized light, opening the way to valley information transfer between distant systems. However, these excitons have short lifetimes (ps) and efficiently lose their valley coherence via the electron-hole exchange interaction. Here, we show that control of these processes can be gained by embedding a monolayer of WSe2 in an optical microcavity, forming part-light-part-matter exciton-polaritons. We demonstrate optical initialization of valley coherent polariton populations, exhibiting luminescence with a linear polarization degree up to 3 times higher than displayed by bare excitons. We utilize an external magnetic field alongside selective exciton-cavity-mode detuning to control the polariton valley pseudospin vector rotation, which reaches 45° at B = 8 T. This work provides unique insight into the decoherence mechanisms in TMDs and demonstrates the potential for engineering the valley pseudospin dynamics in monolayer semiconductors embedded in photonic structures.The short exciton life time in atomically thin transition metal dichalcogenides poses limitations to efficient control of the valley pseudospin and coherence. Here, the authors manipulate the exciton coherence in a WSe2 monolayer embedded in an optical microcavity in the strong light-matter coupling regime.

[1]  Aaron M. Jones,et al.  Supplementary Materials Magnetic Control of Valley Pseudospin in Monolayer WSe2 , 2014, 1407.2645.

[2]  A. Kis,et al.  Defect Healing and Charge Transfer-Mediated Valley Polarization in MoS2/MoSe2/MoS2 Trilayer van der Waals Heterostructures. , 2017, Nano letters.

[3]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[4]  P. Tan,et al.  Robust optical emission polarization in MoS2 monolayers through selective valley excitation , 2012, 1206.5128.

[5]  Xiaodong Xu,et al.  Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides , 2014, Nature Communications.

[6]  M. S. Skolnick,et al.  Two-Dimensional Metal–Chalcogenide Films in Tunable Optical Microcavities , 2014, Nano letters.

[7]  X. Marie,et al.  Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides , 2014, 1403.0108.

[8]  M. Z. Maialle,et al.  Exciton spin dynamics in quantum wells. , 1993, Physical review. B, Condensed matter.

[9]  R. Arita,et al.  Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. , 2014, Nature nanotechnology.

[10]  M. N. Makhonin,et al.  Strong exciton-photon coupling in open semiconductor microcavities , 2014, 1403.4830.

[11]  Tony F. Heinz,et al.  Optical manipulation of valley pseudospin , 2016, Nature Physics.

[12]  A. Kavokin,et al.  Optical spin hall effect. , 2005, Physical review letters.

[13]  Fengcheng Wu,et al.  Direct measurement of exciton valley coherence in monolayer WSe2 , 2016 .

[14]  Z. Gong,et al.  Anomalously robust valley polarization and valley coherence in bilayer WS2 , 2014, Proceedings of the National Academy of Sciences.

[15]  Jonghwan Kim,et al.  Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures , 2016, Science Advances.

[16]  Eugene Demler,et al.  Fermi polaron-polaritons in charge-tunable atomically thin semiconductors , 2016, Nature Physics.

[17]  P. Christianen,et al.  Magnetic-Field-Induced Rotation of Polarized Light Emission from Monolayer WS_{2}. , 2016, Physical review letters.

[18]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[19]  C. Ciuti Quantum fluids of light , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[20]  Andras Kis,et al.  Valley Zeeman effect in elementary optical excitations of monolayer WSe2 , 2014, Nature Physics.

[21]  Tao Yu,et al.  Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS 2 , 2013, 1401.0047.

[22]  M. S. Skolnick,et al.  Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities , 2015, Nature Communications.

[23]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[24]  Vinod M. Menon,et al.  Optical control of room-temperature valley polaritons , 2017, Nature Photonics.

[25]  C. Schneider,et al.  Valley polarized relaxation and upconversion luminescence from Tamm-plasmon trion–polaritons with a MoSe2 monolayer , 2017, 1705.04464.

[26]  C. Robert,et al.  Control of Exciton Valley Coherence in Transition Metal Dichalcogenide Monolayers. , 2016, Physical review letters.

[27]  Luyi Yang,et al.  Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2 , 2015, Nature Physics.

[28]  M. S. Skolnick,et al.  Valley-addressable polaritons in atomically thin semiconductors , 2017, Nature Photonics.

[29]  C. Robert,et al.  Double resonant Raman scattering and valley coherence generation in monolayer WSe_{2}. , 2015, Physical review letters.

[30]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[31]  Vinayak P. Dravid,et al.  Valley-polarized exciton–polaritons in a monolayer semiconductor , 2017, Nature Photonics.