Mathematical and physical modelling of rainfall in centrifuge

Rainfall simulation in centrifuge models is important for modelling soil–atmosphere interactions. However, the presence of Coriolis force, drag forces, evaporation and wind within the centrifuge may affect the distribution of rainfall over the model. As a result, development of appropriate centrifuge rain simulators requires a demanding process of experimental trial and error. This paper highlights the key factors involved in controlling rainfall in centrifuge simulations, develops a mathematical model to simulate rainfall within a centrifuge and shows how to calibrate it experimentally. Finally, the paper summarises some important factors that should be considered in the development of rainfall simulators for centrifuges.

[1]  Artemi Cerdà,et al.  Design and operation of a small and portable rainfall simulator for rugged terrain , 1997 .

[2]  R. Gunn,et al.  THE TERMINAL VELOCITY OF FALL FOR WATER DROPLETS IN STAGNANT AIR , 1949 .

[3]  Satoshi Tamate,et al.  Simulation of precipitation on centrifuge models of slopes , 2012 .

[4]  L. Thorel,et al.  Centrifuge modelling of unsaturated soils , 2014 .

[5]  Malcolm D. Bolton,et al.  Seasonal ratcheting and softening in clay slopes, leading to first-time failure , 2011 .

[6]  L. D. Meyer,et al.  Multiple-intensity rainfall simulator for erosion research on row sideslopes. , 1979 .

[7]  K. R. May,et al.  The Measurement of Airborne Droplets by the Magnesium Oxide Method , 1950 .

[8]  Spg Madabhushi,et al.  Development of teaching resources for physical modelling community , 2010 .

[9]  C. E. Goering,et al.  Mathematical modeling of spray droplet deceleration and evaporation , 1972 .

[10]  T. Burt,et al.  Rainfall simulators for investigating soil response to rainfall , 1989 .

[11]  C. N. Floyd,et al.  A mobile rainfall simulator for small plot field experiments , 1981 .

[12]  M. J. Hall A Critique of Methods of Simulating Rainfall , 1970 .

[13]  O. Planchon,et al.  The ‘EMIRE’ large rainfall simulator: design and field testing , 2000 .

[15]  Sarah M. Springman,et al.  A long-term field study for the investigation of rainfall-induced landslides , 2013 .

[16]  H. Aksoy,et al.  A rainfall simulator for laboratory-scale assessment of rainfall-runoff-sediment transport processes over a two-dimensional flume , 2012 .

[17]  N. Thompson,et al.  Estimating spray drift using a random-walk model of evaporating drops , 1983 .

[18]  Mark Randolph,et al.  Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling , 2007 .

[19]  M. M. Sidahmed,et al.  A Virtual Nozzle for Simulation of Spray Generation and Droplet Transport , 2005 .

[20]  Ben Leshchinsky,et al.  Centrifuge Modeling of Slope Instability , 2009 .

[21]  P. L. Dhar,et al.  Heat and mass transfer processes between a water spray and ambient air -II. Simulations , 2008 .

[22]  Billy J. Barfield,et al.  Kentucky Rainfall Simulator , 1983 .

[23]  Jan Laue,et al.  Centrifuge scaling laws for guided free fall events including rockfalls , 2006 .

[24]  J. Ries,et al.  A portable wind and rainfall simulator for in situ soil erosion measurements , 2012 .

[25]  N. P. Thomas,et al.  Construction and calibration of a rainfall simulator , 1989 .

[26]  Donald A. Parsons,et al.  The relation of raindrop-size to intensity , 1943 .

[27]  A. Navas,et al.  Design and operation of a rainfall simulator for field studies of runoff and soil erosion , 1990 .

[28]  P. Berliner,et al.  Rainfall simulator for field runoff studies , 2012 .

[29]  J. Laws,et al.  Measurements of the fall-velocity of water -drops and raindrops , 1941 .

[30]  L. Thorel,et al.  Physical modelling of wetting-induced collapse in embankment base , 2011 .