Nr2f1b control venous specification and angiogenic patterning during zebrafish vascular development

[1]  Hsueh-Wei Chang,et al.  Nuclear Receptor Subfamily 2 Group F Member 1a (nr2f1a) Is Required for Vascular Development in Zebrafish , 2014, PloS one.

[2]  Richard J. Poole,et al.  SoxF factors and Notch regulate nr2f2 gene expression during venous differentiation in zebrafish. , 2014, Developmental biology.

[3]  A. Luttun,et al.  Transcription factor COUP-TFII is indispensable for venous and lymphatic development in zebrafish and Xenopus laevis. , 2011, Biochemical and biophysical research communications.

[4]  S. Sumanas,et al.  Cranial vasculature in zebrafish forms by angioblast cluster-derived angiogenesis. , 2010, Developmental biology.

[5]  C. Lien,et al.  Platelet-Derived Growth Factor Receptor β Is Critical for Zebrafish Intersegmental Vessel Formation , 2010, PloS one.

[6]  Peng-chun Yu,et al.  TRPC1 Is Essential for In Vivo Angiogenesis in Zebrafish , 2010, Circulation research.

[7]  Oscar A. Montemayor,et al.  Genome-Wide Analysis of Binding Sites and Direct Target Genes of the Orphan Nuclear Receptor NR2F1/COUP-TFI , 2010, PloS one.

[8]  S. Sumanas,et al.  Identification of vasculature‐specific genes by microarray analysis of etsrp/etv2 overexpressing zebrafish embryos , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[9]  B. Weinstein,et al.  Arterial–Venous Specification During Development , 2009, Circulation research.

[10]  K. Miyazono,et al.  COUP‐TFII regulates the functions of Prox1 in lymphatic endothelial cells through direct interaction , 2009, Genes to cells : devoted to molecular & cellular mechanisms.

[11]  Young-Kwon Hong,et al.  Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate. , 2009, Blood.

[12]  Holger Gerhardt,et al.  Angiogenesis: a team effort coordinated by notch. , 2009, Developmental cell.

[13]  Marina Mione,et al.  How to create the vascular tree? (Latest) help from the zebrafish. , 2008, Pharmacology & therapeutics.

[14]  Melissa Hardy,et al.  The Tol2kit: A multisite gateway‐based construction kit for Tol2 transposon transgenesis constructs , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[15]  J. Kissil,et al.  Angiomotin regulates endothelial cell migration during embryonic angiogenesis. , 2007, Genes & development.

[16]  K. Alitalo,et al.  Molecular regulation of angiogenesis and lymphangiogenesis , 2007, Nature Reviews Molecular Cell Biology.

[17]  Jau-Nian Chen,et al.  FoxH1 negatively modulates flk1 gene expression and vascular formation in zebrafish. , 2007, Developmental biology.

[18]  Adam L. Bermange,et al.  Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis , 2007, Development.

[19]  Nathan D. Lawson,et al.  Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries , 2007, Nature.

[20]  S. Childs,et al.  MAPping Out Arteries and Veins , 2006, Science's STKE.

[21]  Heather M. Alger,et al.  COUP-TFI controls Notch regulation of hair cell and support cell differentiation , 2006, Development.

[22]  B. Weinstein,et al.  Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Fu-Jung Lin,et al.  Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity , 2005, Nature.

[24]  B. Weinstein,et al.  Angiogenic network formation in the developing vertebrate trunk , 2003, Development.

[25]  K. Alitalo,et al.  VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia , 2003, The Journal of cell biology.

[26]  Nathan D. Lawson,et al.  Arteries and veins: making a difference with zebrafish , 2002, Nature Reviews Genetics.

[27]  B. Weinstein,et al.  In vivo imaging of embryonic vascular development using transgenic zebrafish. , 2002, Developmental biology.

[28]  R. Moon,et al.  Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. , 2002, Development.

[29]  M. Fishman,et al.  Patterning of angiogenesis in the zebrafish embryo. , 2002, Development.

[30]  J. Campos-Ortega,et al.  Notch signaling is required for arterial-venous differentiation during embryonic vascular development. , 2001, Development.

[31]  M. Tsai,et al.  COUP-TFI: an intrinsic factor for early regionalization of the neocortex. , 2001, Genes & development.

[32]  G. Salbert,et al.  The LIM/homeodomain protein islet-1 modulates estrogen receptor functions. , 2000, Molecular endocrinology.

[33]  G. Oliver,et al.  Prox1 Function Is Required for the Development of the Murine Lymphatic System , 1999, Cell.

[34]  M. Tsai,et al.  The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. , 1999, Genes & development.

[35]  W. Risau,et al.  Mechanisms of angiogenesis , 1997, Nature.

[36]  L. Lettice,et al.  Whole-mount in situ hybridizations on zebrafish embryos using a mixture of digoxigenin- and fluorescein-labelled probes. , 1994, Trends in genetics : TIG.

[37]  B. Thisse,et al.  High-resolution in situ hybridization to whole-mount zebrafish embryos , 2007, Nature Protocols.

[38]  M. Westerfield The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio) , 1995 .