Assessment of Vertically Integrated Liquid (VIL) Water Content Radar Measurement

Abstract Vertically integrated liquid (VIL) water content is a parameter obtained from a radar performing voluminal scanning. This parameter has proven useful in the detection of severe storms and may be a worthwhile indicator for very short-term rainfall forecasting methods. Unfortunately, no information is available on the accuracy of VIL radar measurements. The present paper addresses this issue by means of simulation. Reference VILs are defined from vertical profiles of drop size distributions (DSD). These profiles make it possible to simulate the corresponding vertical profiles of reflectivity as well as the radar measurements used to deduce the VIL, as estimated classically (i.e., application of a classical relationship between equivalent radar reflectivity factor Ze and liquid water content M adapted to raindrops). A comparison of the reference VIL to the corresponding estimate then allows estimating radar measurement error. The VIL measurement error is first studied from two hypothetical, yet real...

[1]  J. Marshall,et al.  THE DISTRIBUTION OF RAINDROPS WITH SIZE , 1948 .

[2]  R. C. Srivastava,et al.  Doppler radar characteristics of precipitation at vertical incidence , 1973 .

[3]  L. R. Koenig,et al.  A Short Course in Cloud Physics , 1979 .

[4]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[5]  Robert F. Adler,et al.  Thunderstorm cloud height-rainfall rate relations for use with satellite rainfall estimation techniques , 1984 .

[6]  Konstantine P. Georgakakos,et al.  A hydrologically useful station precipitation model: 1. Formulation , 1984 .

[7]  Wim Klaassen,et al.  Radar Observations and Simulation of the Melting Layer of Precipitation , 1988 .

[8]  Andrew J. Heymsfield,et al.  Structure of the Melting Layer in Mesoscale Convective System Stratiform Precipitation , 1989 .

[9]  K. Georgakakos,et al.  A two‐dimensional stochastic‐dynamical quantitative precipitation forecasting model , 1990 .

[10]  J. Creutin,et al.  Mean K-R Relationships: Practical Results for Typical Weather Radar Wavelengths , 1991 .

[11]  Dong-Jun Seo,et al.  Radar-based short-term rainfall prediction , 1992 .

[12]  H. Russchenberg,et al.  Ground-based remote sensing of precipitation using a multi-polarized FM-CW Doppler radar , 1992 .

[13]  David A. Imy,et al.  A Description of the Initial Set of Analysis Products Available from the NEXRAD WSR-88D System , 1993 .

[14]  J. M. Porrà,et al.  A general formulation for raindrop size distribution , 1994 .

[15]  Witold F. Krajewski,et al.  A model for real-time quantitative rainfall forecasting using remote sensing: 1. Formulation , 1994 .

[16]  Wayne E. McGovern,et al.  The WSR-88D Severe Weather Potential Algorithm , 1995 .

[17]  Frédéric Fabry,et al.  Long-Term Radar Observations of the Melting Layer of Precipitation and Their Interpretation , 1995 .

[18]  Uncertainty in Vertically Integrated Liquid Water Content due to Radar Reflectivity Observation Error , 1995 .

[19]  A. R. Holt,et al.  A melting-layer model and its use in correcting for the bright band in single-polarization radar echoes , 1995 .

[20]  Takuma Takasao,et al.  Short‐term rainfall prediction method using a volume scanning radar and grid point value data from numerical weather prediction , 1996 .

[21]  Witold F. Krajewski,et al.  Adaptation and application of a quantitative rainfall forecasting model in a mountainous region , 1996 .

[22]  Konstantine P. Georgakakos,et al.  Operational Rainfall Prediction on Meso‐γ Scales for Hydrologic Applications , 1996 .

[23]  Steven A. Amburn,et al.  VIL Density as a Hail Indicator , 1997 .

[24]  Brian G. Smith,et al.  Use of regression techniques to predict hail size and the probability of large hail , 1997 .

[25]  Emmanouil N. Anagnostou,et al.  A Simulation Approach for Validation of a Brightband Correction Method , 1997 .

[26]  Richard L. Thompson,et al.  Nationwide comparisons of hail size with WSR-88D vertically integrated liquid water and derived thermodynamic sounding data , 1998 .

[27]  Isztar Zawadzki,et al.  Modeling of the melting layer. Part I : Dynamics and microphysics , 1999 .

[28]  Dawei Han,et al.  Hydromet integrated radar experiment (HIRE) : experimental setup and first results , 1999 .

[29]  M. Shafer,et al.  Cloud-to-Ground Lightning throughout the Lifetime of a Severe Storm System in Oklahoma , 2000 .

[30]  Implementation considerations of a conceptual precipitation model , 2000 .

[31]  Véronique Ducrocq,et al.  Initialization of a fine‐scale model for convective‐system prediction: A case study , 2000 .

[32]  Hervé Andrieu,et al.  A radar data based short-term rainfall prediction model for urban areas : a simulation using meso-scale meteorological modelling , 2000 .

[33]  Soichiro Sugimoto,et al.  A stochastic approach to short-term rainfall prediction using a physically based conceptual rainfall model , 2001 .