Functional-device-based VLSI for intelligent electronic systems

Implementing intelligent systems directly on integrated circuits hardware is presented. The key concept of the approach is the enhancement in the basic functionality of a transistor and the binary-multivalued-analog merged computation using the functional device. Intelligent LSI systems based on the psychological model of a brain are proposed. The system stores the past experience in non-volatile vast analog memories and recall the maximum-likelihood event to a current input using the association processor working in the analog/digital-merged decision making principle.

[1]  Tadahiro Ohmi,et al.  Neuron MOS binary-logic integrated circuits. II. Simplifying techniques of circuit configuration and their practical applications , 1993 .

[2]  Tadashi Shibata,et al.  Neuron-MOS correlator based on Manhattan distance computation for event recognition hardware , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[3]  Tadahiro Ohmi,et al.  DC-current-free low-power A/D converter circuitry using dynamic latch comparators with divided-capacitance voltage reference , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[4]  Gordon E. Moore,et al.  Progress in digital integrated electronics , 1975 .

[5]  Tadashi Shibata,et al.  Neuron MOS binary-logic integrated circuits. I. Design fundamentals and soft-hardware-logic circuit implementation , 1993 .

[6]  T. Ohmi,et al.  Neural microelectronics , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[7]  Tadashi Shibata,et al.  Neuron MOS winner-take-all circuit and its application to associative memory , 1993, 1993 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[8]  Tadahiro Ohmi,et al.  Write/verify free analog non-volatile memory using a neuron-MOS comparator , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[9]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[10]  Tadashi Shibata,et al.  A functional MOS transistor featuring gate-level weighted sum and threshold operations , 1992 .

[11]  Tadashi Shibata,et al.  Clocked-neuron-MOS logic circuits employing auto-threshold-adjustment , 1995, Proceedings ISSCC '95 - International Solid-State Circuits Conference.

[12]  Tadashi Shibata,et al.  Real-time reconfigurable logic circuits using neuron MOS transistors , 1993, 1993 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[13]  Werner Weber,et al.  On the application of the Neuron MOS transistor principle for modern VLSI design , 1996 .

[14]  T. Ohmi,et al.  Advances in neuron-MOS applications , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.

[15]  Tadashi Shibata,et al.  A neuron-MOS neural network using self-learning-compatible synapse circuits , 1995, IEEE J. Solid State Circuits.

[16]  Hiroto Yasuura,et al.  A module generator of 2-level neuron MOS circuits , 1998 .

[17]  Junichi Nakamura,et al.  Image sensor with image smoothing capability using a neuron MOSFET , 1994, Electronic Imaging.

[18]  Chee Yee Kwok,et al.  A novel multi-input floating-gate MOS four-quadrant analog multiplier , 1996 .

[19]  Tetsuo Endoh,et al.  Fast and accurate programming method for multi-level NAND EEPROMs , 1995, 1995 Symposium on VLSI Technology. Digest of Technical Papers.

[20]  James D. Meindl,et al.  Low power microelectronics: retrospect and prospect , 1995, Proc. IEEE.

[21]  Tadashi Shibata,et al.  Neuron-MOS multiple-valued memory technology for intelligent data processing , 1994, Proceedings of IEEE International Solid-State Circuits Conference - ISSCC '94.