Steinitz Theorems for Simple Orthogonal Polyhedra

We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex.By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra , which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra , in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.

[1]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[2]  Igor Rivin A characterization of ideal polyhedra in hyperbolic $3$-space , 1996 .

[3]  I. Rinsma Rectangular and Orthogonal Floorplans with Required Room Areas and Tree Adjacency , 1988 .

[4]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[5]  Goos Kant,et al.  Regular Edge Labeling of 4-Connected Plane Graphs and Its Applications in Graph Drawing Problems , 1997, Theor. Comput. Sci..

[6]  Stavros S. Cosmadakis,et al.  The Complexity of Minimizing Wire Lengths in VLSI Layouts , 1987, Inf. Process. Lett..

[7]  Michael B. Dillencourt,et al.  Graph-theoretical conditions for inscribability and Delaunay realizability , 1996, Discret. Math..

[8]  Christos H. Papadimitriou,et al.  The complexity of recognizing polyhedral scenes , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[9]  Roberto Tamassia,et al.  On-Line Graph Algorithms with SPQR-Trees , 1990, ICALP.

[10]  David Eppstein,et al.  Drawings of planar graphs with few slopes and segments , 2007, Comput. Geom..

[11]  Bettina Speckmann,et al.  Area-Universal and Constrained Rectangular Layouts , 2012, SIAM J. Comput..

[12]  David R. Wood,et al.  Graph drawings with few slopes , 2007, Comput. Geom..

[13]  Mikkel Thorup,et al.  Tight(er) worst-case bounds on dynamic searching and priority queues , 2000, STOC '00.

[14]  Majid Sarrafzadeh,et al.  Sliceable Floorplanning by Graph Dualization , 1995, SIAM J. Discret. Math..

[15]  Therese C. Biedl,et al.  When can a graph form an orthogonal polyhedron? , 2004, CCCG.

[16]  David Eppstein The lattice dimension of a graph , 2005, Eur. J. Comb..

[17]  Jarke J. van Wijk,et al.  Squarified Treemaps , 2000, VisSym.

[18]  David L. Waltz,et al.  Understanding Line drawings of Scenes with Shadows , 1975 .

[19]  G. Ziegler Lectures on Polytopes , 1994 .

[20]  Roberto Tamassia,et al.  On Embedding a Graph in the Grid with the Minimum Number of Bends , 1987, SIAM J. Comput..

[21]  Norishige Chiba,et al.  Arboricity and Subgraph Listing Algorithms , 1985, SIAM J. Comput..

[22]  David Eppstein,et al.  Isometric Diamond Subgraphs , 2008, GD.

[23]  Balázs Keszegh,et al.  Drawing Cubic Graphs with at Most Five Slopes , 2006, Graph Drawing.

[24]  Petra Mutzel,et al.  A Linear Time Implementation of SPQR-Trees , 2000, GD.

[25]  Joseph O'Rourke,et al.  Nonorthogonal polyhedra built from rectangles , 2002, CCCG.

[26]  Marek Chrobak,et al.  Planar Orientations with Low Out-degree and Compaction of Adjacency Matrices , 1991, Theor. Comput. Sci..

[27]  Mario Szegedy,et al.  Geometric representation of cubic graphs with four directions , 2009, Comput. Geom..

[28]  R. Connelly,et al.  The Bellows conjecture. , 1997 .

[29]  Éric Fusy,et al.  Transversal structures on triangulations: A combinatorial study and straight-line drawings , 2006, Discret. Math..

[30]  Md. Saidur Rahman,et al.  Orthogonal Drawings of Plane Graphs Without Bends , 2001, J. Graph Algorithms Appl..

[31]  D. A. Huffman,et al.  Impossible Objects as Nonsense Sentences , 2012 .

[32]  David Eppstein Cubic Partial Cubes from Simplicial Arrangements , 2006, Electron. J. Comb..

[33]  B. McKay,et al.  Fast generation of planar graphs , 2007 .

[34]  V. Batagelj An improved inductive definition of two restricted classes of triangulations of the plane , 1989 .

[35]  Edwin Kinnen,et al.  Rectangular duals of planar graphs , 1985, Networks.

[36]  Erik D. Demaine,et al.  Unfolding some classes of orthogonal polyhedra , 1998, CCCG.

[37]  S. Lane A structural characterization of planar combinatorial graphs , 1937 .

[38]  David R. Wood,et al.  Lower Bounds for the Number of Bends in Three-Dimensional Orthogonal Graph Drawings , 2000, J. Graph Algorithms Appl..

[39]  Goos Kant Hexagonal Grid Drawings , 1992, WG.

[40]  E. Raisz The Rectangular Statistical Cartogram , 1934 .

[41]  W. Thurston Conway's tiling groups , 1990 .

[42]  Bettina Speckmann,et al.  Area-universal rectangular layouts , 2009, SCG '09.

[43]  David R. Wood,et al.  Optimal three-dimensional orthogonal graph drawing in the general position model , 2003, Theor. Comput. Sci..

[44]  Maarten Löffler,et al.  Connected Rectilinear Graphs on Point Sets , 2009, J. Comput. Geom..

[45]  Roberto Tamassia,et al.  Incremental planarity testing , 1989, 30th Annual Symposium on Foundations of Computer Science.

[46]  Sridar Kuttan PootheriNational Decomposition characterizations of classes of 2-connected graphs , 2007 .

[47]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[48]  János Pach,et al.  Bounded-Degree Graphs can have Arbitrarily Large Slope Numbers , 2006, Electron. J. Comb..

[49]  David Eppstein,et al.  The Complexity of Bendless Three-Dimensional Orthogonal Graph Drawing , 2007, J. Graph Algorithms Appl..

[50]  Stefan Felsner,et al.  Schnyder Woods and Orthogonal Surfaces , 2006, GD.

[51]  David Eppstein,et al.  Adjacency-preserving spatial treemaps , 2011, J. Comput. Geom..

[52]  Michel Balinski,et al.  On the graph structure of convex polyhedra in n-space , 1961 .

[53]  Therese C. Biedl,et al.  Cauchy's Theorem for Orthogonal Polyhedra of Genus 0 , 2009, ESA.

[54]  David Eppstein,et al.  The Topology of Bendless Three-Dimensional Orthogonal Graph Drawing , 2009, GD.

[55]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[56]  Robert Connelly,et al.  A counterexample to the rigidity conjecture for polyhedra , 1977 .

[57]  Therese C. Biedl,et al.  Hexagonal Grid Drawings: Algorithms and Lower Bounds , 2004, Graph Drawing.

[58]  David Eppstein,et al.  Orientation-Constrained Rectangular Layouts , 2009, WADS.

[59]  Éric Fusy,et al.  Transversal Structures on Triangulations, with Application to Straight-Line Drawing , 2005, GD.

[60]  Robert E. Tarjan,et al.  Dividing a Graph into Triconnected Components , 1973, SIAM J. Comput..

[61]  Warren D. Smith,et al.  A characterization of convex hyperbolic polyhedra and of convex polyhedra inscribed in the sphere , 1992, math/9210218.