Variable-Length Convolutional Coding for Short Blocklengths With Decision Feedback

This paper presents a variable-length decision-feedback coding scheme that achieves high rates at short blocklengths. This scheme uses the reliability-output Viterbi algorithm (ROVA) to determine when the receiver's decoding estimate satisfies a given error constraint. We evaluate the performance of both terminated and tail-biting convolutional codes at average blocklengths less than 300 symbols, using the ROVA and the tail-biting ROVA, respectively. Comparing with recent results from finite-blocklength information theory, simulations for both the BSC and the AWGN channel show that the reliability-based decision-feedback scheme can surpass the random-coding lower bound on throughput for feedback codes at some blocklengths less than 100 symbols. This is true both when decoding after every symbol is permitted and when decoding is limited to a small number of increments. Finally, the performance of the reliability-based stopping rule with the ROVA is compared with retransmission decisions based on CRCs. For short blocklengths where the latency overhead of the CRC bits is severe, the ROVA-based approach delivers superior rates.

[1]  John B. Anderson,et al.  Tailbiting MAP Decoders , 1998, IEEE J. Sel. Areas Commun..

[2]  John B. Anderson,et al.  Decision depths of convolutional codes , 1989, IEEE Trans. Inf. Theory.

[3]  Behrooz Makki,et al.  Finite Block-Length Analysis of the Incremental Redundancy HARQ , 2014, IEEE Wireless Communications Letters.

[4]  Emina Soljanin,et al.  Hybrid ARQ: Theory, State of the Art and Future Directions , 2007, 2007 IEEE Information Theory Workshop on Information Theory for Wireless Networks.

[5]  Richard D. Wesel,et al.  Incremental redundancy: A comparison of a sphere-packing analysis and convolutional codes , 2011, 2011 Information Theory and Applications Workshop.

[6]  Behrooz Makki,et al.  Green communication via Type-I ARQ: Finite block-length analysis , 2014, 2014 IEEE Global Communications Conference.

[7]  John M. Shea,et al.  Reliability-based hybrid ARQ , 2002 .

[8]  Richard D. Wesel,et al.  A Sphere-Packing Analysis of Incremental Redundancy with Feedback , 2011, 2011 IEEE International Conference on Communications (ICC).

[9]  George N. Karystinos,et al.  Binary Transmissions over Additive Gaussian Noise : A Closed-Form Expression for the Channel Capacity 1 , 2005 .

[10]  Emina Soljanin,et al.  IR-HARQ schemes with finite-length punctured LDPC codes over the BEC , 2009, 2009 IEEE Information Theory Workshop.

[11]  Johannes B. Huber,et al.  LDPC codes and convolutional codes with equal structural delay: a comparison , 2009, IEEE Transactions on Communications.

[12]  Richard D. Wesel,et al.  Feedback systems using non-binary LDPC codes with a limited number of transmissions , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[13]  V. Anantharam,et al.  Evaluation of the Low Frame Error Rate Performance of LDPC Codes Using Importance Sampling , 2007, 2007 IEEE Information Theory Workshop.

[14]  Giuseppe Durisi,et al.  Quasi-Static Multiple-Antenna Fading Channels at Finite Blocklength , 2013, IEEE Transactions on Information Theory.

[15]  Richard D. Wesel,et al.  Feedback Communication Systems with Limitations on Incremental Redundancy , 2013, ArXiv.

[16]  Shlomo Shamai,et al.  On Optimal Erasure and List Decoding Schemes of Convolutional Codes , 2009 .

[17]  Giuseppe Durisi,et al.  Quasi-static SIMO fading channels at finite blocklength , 2013, 2013 IEEE International Symposium on Information Theory.

[18]  David M. Mandelbaum,et al.  An adaptive-feedback coding scheme using incremental redundancy (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[19]  Hendrik Schoeneich,et al.  RELIABILITY-BASED HARQ USING WORD ERROR PROBABILITIES , 2006 .

[20]  Emina Soljanin,et al.  Punctured vs Rateless Codes for Hybrid ARQ , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.

[21]  Richard D. Wesel,et al.  Convolutional-Code-Specific CRC Code Design , 2015, IEEE Transactions on Communications.

[22]  Ralf R. Müller,et al.  Low latency-constrained high rate coding: LDPC codes vs. convolutional codes , 2014, 2014 8th International Symposium on Turbo Codes and Iterative Information Processing (ISTC).

[23]  N. Varnica,et al.  Incremental Redundancy Hybrid ARQ with LDPC and Raptor Codes , 2005 .

[24]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[25]  Richard D. Wesel,et al.  Short-blocklength non-binary LDPC codes with feedback-dependent incremental transmissions , 2014, 2014 IEEE International Symposium on Information Theory.

[26]  Kai Chen,et al.  A Hybrid ARQ Scheme Based on Polar Codes , 2013, IEEE Communications Letters.

[27]  G. David Forney,et al.  Exponential error bounds for erasure, list, and decision feedback schemes , 1968, IEEE Trans. Inf. Theory.

[28]  Tara Javidi,et al.  Extrinsic Jensen–Shannon Divergence: Applications to Variable-Length Coding , 2013, IEEE Transactions on Information Theory.

[29]  Sheldon S. L. Chang Theory of information feedback systems , 1956, IRE Trans. Inf. Theory.

[30]  Daniel J. Costello,et al.  Low Latency Coding: Convolutional Codes vs. LDPC Codes , 2012, IEEE Transactions on Communications.

[31]  Joachim Hagenauer,et al.  Rate-compatible punctured convolutional codes (RCPC codes) and their applications , 1988, IEEE Trans. Commun..

[32]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[33]  Masahito Hayashi,et al.  Information Spectrum Approach to Second-Order Coding Rate in Channel Coding , 2008, IEEE Transactions on Information Theory.

[34]  Devavrat Shah,et al.  Spinal codes , 2012, CCRV.

[35]  Kohji Itoh,et al.  Viterbi decoding algorithm for convolutional codes with repeat request , 1980, IEEE Trans. Inf. Theory.

[36]  John M. Shea,et al.  Reliability-based hybrid ARQ using convolutional codes , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[37]  Devavrat Shah,et al.  Rateless spinal codes , 2011, HotNets-X.

[38]  Carl W. Baum,et al.  A Reliability Output Viterbi Algorithm with Applications to Hybrid ARQ , 1998, IEEE Trans. Inf. Theory.

[39]  Peter A. Hoeher,et al.  Reliability-based retransmission criteria for hybrid ARQ , 2009, IEEE Transactions on Communications.

[40]  J. Massey CAUSALITY, FEEDBACK AND DIRECTED INFORMATION , 1990 .

[41]  Kenneth Alfred Witzke,et al.  A Comparison of Some Error Detecting CRC Code Standards , 1985, IEEE Trans. Commun..

[42]  W. Marsden I and J , 2012 .

[43]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[44]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[45]  Richard D. Wesel,et al.  Reliability-based error detection for feedback communication with low latency , 2013, 2013 IEEE International Symposium on Information Theory.

[46]  David Declercq,et al.  Adaptive HARQ With Non-Binary Repetition Coding , 2014, IEEE Transactions on Wireless Communications.

[47]  Daniel J. Costello,et al.  Error Control Coding, Second Edition , 2004 .

[48]  R. Gallager Stochastic Processes , 2014 .

[49]  Emina Soljanin,et al.  Optimized IR-HARQ Schemes Based on Punctured LDPC Codes Over the BEC , 2010, IEEE Transactions on Information Theory.

[50]  Stephen B. Wicker,et al.  Applications of Error-Control Coding , 1998, IEEE Trans. Inf. Theory.

[51]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[52]  Michael L. Honig,et al.  Reliability-based incremental redundancy with convolutional codes , 2005, IEEE Transactions on Communications.

[53]  Kai Chen,et al.  Polar coded HARQ scheme with Chase combining , 2013, 2014 IEEE Wireless Communications and Networking Conference (WCNC).

[54]  Richard D. Wesel,et al.  Variable-length coding with feedback: Finite-length codewords and periodic decoding , 2013, 2013 IEEE International Symposium on Information Theory.

[55]  David Luis Romero A comparative analysis of physical-layer rateless coding architectures , 2014 .

[56]  Yunghsiang Sam Han,et al.  New HARQ Scheme Based on Decoding of Tail-Biting Convolutional Codes in IEEE 802.16e , 2011, IEEE Transactions on Vehicular Technology.

[57]  Philip Koopman,et al.  Cyclic redundancy code (CRC) polynomial selection for embedded networks , 2004, International Conference on Dependable Systems and Networks, 2004.

[58]  H. Vincent Poor,et al.  Feedback in the Non-Asymptotic Regime , 2011, IEEE Transactions on Information Theory.

[59]  Peter A. Hoeher,et al.  Word Error Probability Estimation by Means of a Modified Viterbi Decoder , 2007, 2007 IEEE 66th Vehicular Technology Conference.

[60]  Tara Javidi,et al.  Optimal reliability over a class of binary-input channels with feedback , 2012, 2012 IEEE Information Theory Workshop.

[61]  L. Litwin,et al.  Error control coding , 2001 .

[62]  Arafat J. Al-Dweik,et al.  CRC-Free Hybrid ARQ System Using Turbo Product Codes , 2014, IEEE Transactions on Communications.

[63]  John M. Shea,et al.  Reliability-based hybrid ARQ and rate-compatible punctured convolutional (RCPC) codes , 2004, 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733).

[64]  Richard D. Wesel,et al.  Firing the genie: Two-phase short-blocklength convolutional coding with feedback , 2013, 2013 Information Theory and Applications Workshop (ITA).

[65]  Richard D. Wesel,et al.  Reliability-Output Decoding of Tail-Biting Convolutional Codes , 2013, IEEE Transactions on Communications.