Towards an atomistic understanding of disordered carbon electrode materials

Machine-learning and DFT modelling, linked to experimental knowledge, yield new insight into the structures and reactivity of carbonaceous energy materials.

[1]  Lev Sarkisov,et al.  Computational structure characterisation tools in application to ordered and disordered porous materials , 2011 .

[2]  Oliver Pecher,et al.  Mechanistic insights into sodium storage in hard carbon anodes using local structure probes. , 2016, Chemical communications.

[3]  J. Vijaya,et al.  Electrical conductivity study of porous carbon composite derived from rice husk , 2005 .

[4]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[5]  M. Oschatz,et al.  Interaction of electrolyte molecules with carbon materials of well-defined porosity: characterization by solid-state NMR spectroscopy. , 2013, Physical chemistry chemical physics : PCCP.

[6]  S. Trabesinger,et al.  EELS studies of carbide derived carbons , 2007 .

[7]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[8]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[9]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[10]  Luciano Colombo,et al.  Computer-based modeling of novel carbon systems and their properties : beyond nanotubes , 2010 .

[11]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[12]  J. Singer,et al.  Titanium Carbide Derived Nanoporous Carbon for Energy-Related Applications , 2006 .

[13]  C. Godet Hopping model for charge transport in amorphous carbon , 2001 .

[14]  Fernando Vallejos-Burgos,et al.  Structural prediction of graphitization and porosity in carbide-derived carbons , 2017 .

[15]  B. Etzold,et al.  Molecular Modeling of Microporous Structures of Carbide-Derived Carbon-Based Supercapacitors , 2017 .

[16]  Nigel A. Marks,et al.  Graphitization of amorphous carbons: A comparative study of interatomic potentials , 2016 .

[17]  G. Cicero,et al.  Structure-property relations in amorphous carbon for photovoltaics , 2014 .

[18]  Yong-Sheng Hu,et al.  Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries , 2016 .

[19]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[20]  N. Marks,et al.  Self-assembly of sp2-bonded carbon nanostructures from amorphous precursors , 2009 .

[21]  Marca M. Doeff,et al.  Electrochemical Insertion of Sodium into Carbon , 1993 .

[22]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[23]  L. Zhi,et al.  Graphene-based electrode materials for rechargeable lithium batteries , 2009 .

[24]  Yunfeng Shi,et al.  Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics , 2010 .

[25]  A. K. Cuentas-Gallegos,et al.  A theoretical approach to the nanoporous phase diagram of carbon , 2017, 1701.06713.

[26]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[27]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[28]  Sébastien Le Roux,et al.  Ring statistics analysis of topological networks: New approach and application to amorphous GeS2 and SiO2 systems , 2010 .

[29]  B. Rand,et al.  Investigating the structure of non-graphitising carbons using electron energy loss spectroscopy in the transmission electron microscope , 2011 .

[30]  Alexander C. Forse,et al.  In Situ NMR Spectroscopy of Supercapacitors: Insight into the Charge Storage Mechanism , 2013, Journal of the American Chemical Society.

[31]  Topological Investigation of Two-Dimensional Amorphous Materials , 2014 .

[32]  I. Snook,et al.  Microstructure of an industrial char by diffraction techniques and Reverse Monte Carlo modelling , 2004 .

[33]  A. Tkatchenko,et al.  Accurate and efficient method for many-body van der Waals interactions. , 2012, Physical review letters.

[34]  Alexandre Tkatchenko,et al.  Long-range correlation energy calculated from coupled atomic response functions. , 2013, The Journal of chemical physics.

[35]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[36]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[37]  D. Su,et al.  Mesoporous and Graphitic Carbide-Derived Carbons as Selective and Stable Catalysts for the Dehydrogenation Reaction , 2015 .

[38]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[39]  H. L. Riley,et al.  Amorphous carbon. , 1946, Journal of the Chemical Society.

[40]  Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy , 2017 .

[41]  Alexander C. Forse,et al.  New Insights into the Structure of Nanoporous Carbons from NMR, Raman, and Pair Distribution Function Analysis , 2015 .

[42]  Huan Liu,et al.  Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance , 2016 .

[43]  Clement Bommier,et al.  Electrochemically Expandable Soft Carbon as Anodes for Na-Ion Batteries , 2015, ACS central science.

[44]  S. Bhatia,et al.  Hybrid Reverse Monte Carlo simulation of amorphous carbon: Distinguishing between competing structures obtained using different modeling protocols , 2015 .

[45]  J. Mansot,et al.  An EELS‐based study of the effects of pyrolysis on natural carbonaceous materials used for activated charcoal preparation , 2003, Journal of microscopy.

[46]  S. Bhatia Characterizing Structural Complexity in Disordered Carbons: From the Slit Pore to Atomistic Models. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[47]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[48]  A. Tkatchenko,et al.  Scaling laws for van der Waals interactions in nanostructured materials , 2013, Nature Communications.

[49]  Pierre-Louis Taberna,et al.  In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. , 2015, Nature materials.

[50]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[51]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[52]  M. R. Palacín,et al.  Review-Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries , 2015 .

[53]  Volker L. Deringer,et al.  Gaussian approximation potential modeling of lithium intercalation in carbon nanostructures. , 2017, The Journal of chemical physics.

[54]  Jannik C. Meyer,et al.  From point defects in graphene to two-dimensional amorphous carbon. , 2011, Physical review letters.

[55]  K. Suenaga,et al.  Imaging the atomic structure of activated carbon , 2008 .

[56]  T. Bučko,et al.  Many-body dispersion corrections for periodic systems: an efficient reciprocal space implementation , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[57]  T. Bučko,et al.  Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids , 2013 .

[58]  Long Hao,et al.  Carbonaceous Electrode Materials for Supercapacitors , 2013, Advanced materials.

[59]  John M. Griffin,et al.  New Perspectives on the Charging Mechanisms of Supercapacitors , 2016, Journal of the American Chemical Society.

[60]  A. Tkatchenko,et al.  Many-body van der Waals interactions in molecules and condensed matter , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[61]  L. Luo,et al.  Insights on the Mechanism of Na-Ion Storage in Soft Carbon Anode , 2017 .

[62]  P. Keblinski,et al.  Generation of amorphous carbon models using liquid quench method: A reactive molecular dynamics study , 2017 .

[63]  Volker L. Deringer,et al.  Machine learning based interatomic potential for amorphous carbon , 2016, 1611.03277.

[64]  D. Stevens,et al.  The Mechanisms of Lithium and Sodium Insertion in Carbon Materials , 2001 .

[65]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..