Linking Rock-Eval parameters to soil heterotrophic respiration and microbial residues in a black soil

[1]  P. Barré,et al.  Supplementary material to "A robust initialization method for accurate soil organic carbon simulations" , 2021, Biogeosciences.

[2]  P. Barré,et al.  Predicting Rock-Eval® thermal analysis parameters of a soil layer based on samples from its sublayers; an experimental study on forest soils , 2021 .

[3]  P. Barré,et al.  Long-term bare-fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics , 2021 .

[4]  P. Barré,et al.  Partitioning soil organic carbon into its centennially stable and active fractions with machine-learning models based on Rock-Eval® thermal analysis (PARTYSOCv2.0 and PARTYSOCv2.0EU) , 2021, Geoscientific Model Development.

[5]  J. Clague,et al.  Topsoil organic matter build‐up in glacier forelands around the world , 2020, Global change biology.

[6]  A. Brauman,et al.  A new in-field indicator to assess the impact of land management on soil carbon dynamics , 2020 .

[7]  P. Barré,et al.  Changes in the Rock-Eval signature of soil organic carbon upon extreme soil warming and chemical oxidation - A comparison , 2019, Geoderma.

[8]  Michael Kaiser,et al.  Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison , 2018, Soil Biology and Biochemistry.

[9]  Benjamin L Turner,et al.  Does litter input determine carbon storage and peat organic chemistry in tropical peatlands? , 2018, Geoderma.

[10]  Thomas Kätterer,et al.  A model based on Rock-Eval thermal analysis to quantify the size of the centennially persistent organic carbon pool in temperate soils , 2018 .

[11]  P. Barré,et al.  Environmental factors controlling soil organic carbon stability in French forest soils , 2018, Plant and Soil.

[12]  R. Conant,et al.  Amount and incorporation of plant residue inputs modify residue stabilisation dynamics in soil organic matter fractions , 2018 .

[13]  Manuel Nicolas,et al.  Is Rock-Eval 6 thermal analysis a good indicator of soil organic carbon lability? – A method-comparison study in forest soils , 2018 .

[14]  P. Brunner,et al.  Rock-Eval pyrolysis discriminates soil macro-aggregates formed by plants and earthworms , 2018 .

[15]  J. Jastrow,et al.  The importance of anabolism in microbial control over soil carbon storage , 2017, Nature Microbiology.

[16]  J. Magid,et al.  Repeated application of organic waste affects soil organic matter composition: Evidence from thermal analysis, FTIR-PAS, amino sugars and lignin biomarkers , 2017 .

[17]  Y. Copard,et al.  Dynamics of soil organic matter based on new Rock-Eval indices , 2016 .

[18]  P. Barré,et al.  The energetic and chemical signatures of persistent soil organic matter , 2016, Biogeochemistry.

[19]  H. Sanei,et al.  Evaluating biodegradability of soil organic matter by its thermal stability and chemical composition , 2015 .

[20]  M. Kleber,et al.  The contentious nature of soil organic matter , 2015, Nature.

[21]  J. Poulenard,et al.  Surveying the carbon pools of mountain soils: A comparison of physical fractionation and Rock-Eval pyrolysis , 2015 .

[22]  M. Hetényi,et al.  Soil Organic Matter Characterization Using S3 and S4 Signals from Rock-Eval Pyrolysis , 2014 .

[23]  Guanghui Yu,et al.  Response of the bacterial diversity and soil enzyme activity in particle-size fractions of Mollisol after different fertilization in a long-term experiment , 2014, Biology and Fertility of Soils.

[24]  Eric P. Verrecchia,et al.  Organic matter decomposition: bridging the gap between Rock–Eval pyrolysis and chemical characterization (CPMAS 13C NMR) , 2014, Biogeochemistry.

[25]  D. Sebag,et al.  Soil organic carbon quantity, chemistry and thermal stability in a mountainous landscape: A Rock–Eval pyrolysis survey , 2013 .

[26]  Xiaoping Zhang,et al.  [Assessment of humic and fulvic acids in black soils using near-infrared reflectance spectroscopy]. , 2012, Guang pu xue yu guang pu fen xi = Guang pu.

[27]  H. Sanei,et al.  Standardisation of Rock–Eval pyrolysis for the analysis of recent sediments and soils , 2012 .

[28]  M. Kästner,et al.  SOM genesis: microbial biomass as a significant source , 2012, Biogeochemistry.

[29]  W. Wilhelm,et al.  No-tillage increases soil profile carbon and nitrogen under long-term rainfed cropping systems , 2011 .

[30]  R. Conant,et al.  Biological, chemical and thermal indices of soil organic matter stability in four grassland soils , 2011 .

[31]  N. McLaughlin,et al.  Short-term effects of tillage practices on soil aggregate fractions in a Chinese Mollisol , 2011 .

[32]  J. Dyckmans,et al.  Optimisation of amino sugar quantification by HPLC in soil and plant hydrolysates , 2011, Biology and Fertility of Soils.

[33]  I. Kögel‐Knabner,et al.  Response to the Concept paper: 'What is recalcitrant soil organic matter?' by Markus Kleber , 2010 .

[34]  A. Plante,et al.  Application of thermal analysis techniques in soil science. , 2009 .

[35]  J. Randerson,et al.  Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance , 2009 .

[36]  A. Koelmans,et al.  Quantification methods of Black Carbon: comparison of Rock-Eval analysis with traditional methods. , 2009, Journal of chromatography. A.

[37]  C. Drury,et al.  Short-term Effects of Tillage Practices on Organic Carbon in Clay Loam Soil of Northeast China , 2007 .

[38]  C. Largeau,et al.  Kerogen origin, evolution and structure , 2007 .

[39]  J. Leifeld Thermal stability of black carbon characterised by oxidative differential scanning calorimetry , 2007 .

[40]  M. Hetényi,et al.  Heterogeneous organic matter from the surface horizon of a temperate zone marsh , 2006 .

[41]  J. Espitalie,et al.  La pyrolyse Rock-Eval et ses applications. Troisième partie. Rock-Eval Pyrolysis and Its Applications (Part Three) , 2006 .

[42]  D. Sebag,et al.  Monitoring organic matter dynamics in soil profiles by ‘Rock‐Eval pyrolysis’: bulk characterization and quantification of degradation , 2006 .

[43]  M. Hetényi,et al.  Stepwise Rock-Eval pyrolysis as a tool for typing heterogeneous organic matter in soils , 2005 .

[44]  H. Sanei,et al.  Petrological changes occurring in organic matter from Recent lacustrine sediments during thermal alteration by Rock-Eval pyrolysis , 2005 .

[45]  D. Manning,et al.  Use of Thermogravimetry–Differential Scanning Calorimetry to Characterize Modelable Soil Organic Matter Fractions , 2005 .

[46]  B. Glaser,et al.  Amino sugars and muramic acid—biomarkers for soil microbial community structure analysis , 2004 .

[47]  C. Di-Giovanni,et al.  Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations , 2003 .

[48]  I. Kögel‐Knabner,et al.  Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils , 2003 .

[49]  W. Post,et al.  Soil organic carbon sequestration rates by tillage and crop rotation : A global data analysis , 2002 .

[50]  F. Behar,et al.  Rock-Eval 6 Technology: Performances and Developments , 2001 .

[51]  W. Amelung Methods using amino sugars as markers for microbial residues in soil , 2001 .

[52]  I. Kögel‐Knabner Analytical approaches for characterizing soil organic matter , 2000 .

[53]  F. Marquis,et al.  Rock-Eval 6 Applications in Hydrocarbon Exploration, Production, and Soil Contamination Studies , 1998 .