Alternating Two − Way AC − Tree Automata Research Report LSV

We explore the notion of alternating tw o-way tree automata modulo the theory of finitely many associative-commutative (AC) symbols, some of them with a unit (AC1). This was prompted by questions arising in cryptographic protocol verification, where the emptiness question for intersections of such automata is fundamental. We show that the use of conditional push clauses, or of alternation, leads to undecidability, already in the case of one AC or AC1 symbol, with only functions of arity zero. On the other hand, emptiness is decidable in the general case of many function symbols, including many AC or AC1 symbols, provided push clauses are unconditional and intersection clauses are final. To this end, extensive use of refinements of resolution is made.

[1]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[2]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[3]  Robert E. Shostak,et al.  Deciding Linear Inequalities by Computing Loop Residues , 1981, JACM.

[4]  Oscar H. Ibarra,et al.  Counter Machines and Verification Problems , 2002, Theor. Comput. Sci..

[5]  G. Denker,et al.  CAPSL and MuCAPSL , 2002, Journal of Telecommunications and Information Technology.

[6]  William H. Joyner Resolution Strategies as Decision Procedures , 1976, JACM.

[7]  Andreas Podelski,et al.  Set-Based Analysis of Reactive Infinite-State Systems , 1998, TACAS.

[8]  Jean Goubault-larrecq Higher-Order Automata, Pushdown systems, and Set Constraints , 2001 .

[9]  Editors , 1986, Brain Research Bulletin.

[10]  Jean H. Gallier,et al.  Tree Pushdown Automata , 1985, J. Comput. Syst. Sci..

[11]  Ferenc Gécseg,et al.  Tree Languages , 1997, Handbook of Formal Languages.

[12]  Denis Lugiez A Good Class of Tree Automata , 1998 .

[13]  Rohit Parikh,et al.  On Context-Free Languages , 1966, JACM.

[14]  Thom W. Frühwirth,et al.  Logic programs as types for logic programs , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[15]  Bruce Kallick A decision procedure based on the resolution method , 1968, IFIP Congress.

[16]  Denis Lugiez,et al.  A Good Class of Tree Automata and Application to Inductive Theorem Proving , 1998, ICALP.

[17]  Tadao Kasami,et al.  Solving a Unification Problem under Constrained Substitutions Using Tree Automata , 1994, FSTTCS.

[18]  David Monniaux Abstracting cryptographic protocols with tree automata , 2003, Sci. Comput. Program..

[19]  Thomas Genet,et al.  Rewriting for Cryptographic Protocol Verification , 2000, CADE.

[20]  Gene Tsudik,et al.  Key Agreement in Dynamic Peer Groups , 2000, IEEE Trans. Parallel Distributed Syst..

[21]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[22]  John Mitchell,et al.  Tree Automata with One Memory, Set Constraints, and Ping-Pong Protocols , 2001, ICALP.

[23]  Jean Goubault-Larrecq,et al.  A Method for Automatic Cryptographic Protocol Verification , 2000, IPDPS Workshops.

[24]  Joachim Niehren,et al.  Feature Automata and Recognizable Sets of Feature Trees , 1993, TAPSOFT.

[25]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[26]  Hitoshi Ohsaki,et al.  Beyond Regularity: Equational Tree Automata for Associative and Commutative Theories , 2001, CSL.

[27]  Michael T. Goodrich,et al.  Implementation of an authenticated dictionary with skip lists and commutative hashing , 2001, Proceedings DARPA Information Survivability Conference and Exposition II. DISCEX'01.

[28]  Danny Dolev,et al.  On the security of public key protocols , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[29]  Nicolas Peltier,et al.  Tree Automata and Automated Model Building , 1997, Fundam. Informaticae.

[30]  Jean-Pierre Jouannaud,et al.  Automata-driven automated induction , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[31]  Florent Jacquemard,et al.  Ground reducibility is EXPTIME-complete , 2003, Inf. Comput..

[32]  B. Courcelle On Recognizable Sets and Tree Automata , 1989 .

[33]  Jean Goubault-Larrecq A Method for Automatic Cryptographic Protocol Verification ( Extended , 2000 .

[34]  Denis Lugiez,et al.  Tree Automata Help One To Solve Equational Formulae In AC-Theories , 1994, J. Symb. Comput..

[35]  Harald Ganzinger,et al.  Set constraints are the monadic class , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[36]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[37]  Jean Goubault-Larrecq,et al.  Normal Form Transformations , 2001, Handbook of Automated Reasoning.

[38]  M. Minsky Recursive Unsolvability of Post's Problem of "Tag" and other Topics in Theory of Turing Machines , 1961 .

[39]  Nachum Dershowitz,et al.  In handbook of automated reasoning , 2001 .

[40]  Christoph Weidenbach,et al.  Combining Superposition, Sorts and Splitting , 2001, Handbook of Automated Reasoning.

[41]  Thomas Genet,et al.  Decidable Approximations of Sets of Descendants and Sets of Normal Forms , 1998, RTA.

[42]  Christian G. Fermüller,et al.  Resolution Decision Procedures , 2001, Handbook of Automated Reasoning.

[43]  S. Ginsburg,et al.  Semigroups, Presburger formulas, and languages. , 1966 .

[44]  Wilhelm Ackermann,et al.  Solvable Cases Of The Decision Problem , 1954 .

[45]  E. Allen Emerson,et al.  The Complexity of Tree Automata and Logics of Programs , 1999, SIAM J. Comput..

[46]  Sophie Tison,et al.  Equality and Disequality Constraints on Direct Subterms in Tree Automata , 1992, STACS.

[47]  Jean-Pierre Jouannaud,et al.  Automata-Driven Automated Induction , 2001, Inf. Comput..

[48]  Christoph M. Hoffmann,et al.  Pattern Matching in Trees , 1982, JACM.