Identification of D-amino acid dehydrogenase as an upstream regulator of the autoinduction of a putative acyltransferase in Corynebacterium glutamicum

[1]  D. Kohlheyer,et al.  Beyond growth rate 0.6: What drives Corynebacterium glutamicum to higher growth rates in defined medium , 2014, Biotechnology and bioengineering.

[2]  U. Ha,et al.  Effects of Cell-free Culture Fluids for the Expression of Putative Acyltransferase in Corynebacterium glutamicum , 2012 .

[3]  M. Waldor,et al.  D-Amino Acids Govern Stationary Phase Cell Wall Remodeling in Bacteria , 2009, Science.

[4]  K. Fliegerová,et al.  Diversity of insect intestinal microflora , 2008, Folia Microbiologica.

[5]  Younhee Kim,et al.  Corynebacterium glutamicum sigmaE is involved in responses to cell surface stresses and its activity is controlled by the anti-sigma factor CseE. , 2008, Microbiology.

[6]  V. Wendisch,et al.  NCgl2620 Encodes a Class II Polyphosphate Kinase in Corynebacterium glutamicum , 2007, Applied and Environmental Microbiology.

[7]  K. Brinkrolf,et al.  The transcriptional regulatory network of the amino acid producer Corynebacterium glutamicum. , 2007, Journal of biotechnology.

[8]  A. Colombo,et al.  Prevalence of "non-oral" pathogenic bacteria in subgingival biofilm of subjects with chronic periodontitis , 2006 .

[9]  Hyungjoon Kim,et al.  The whcE gene of Corynebacterium glutamicum is important for survival following heat and oxidative stress. , 2005, Biochemical and biophysical research communications.

[10]  B. Bassler,et al.  Quorum sensing: cell-to-cell communication in bacteria. , 2005, Annual review of cell and developmental biology.

[11]  E. Pesci,et al.  Regulation of Pseudomonas Quinolone Signal Synthesis in Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[12]  S. Lory,et al.  A novel two‐component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes , 2004, Molecular microbiology.

[13]  T. Hermann Industrial production of amino acids by coryneform bacteria. , 2003, Journal of biotechnology.

[14]  Kim R Hardie,et al.  LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. , 2002, Microbiology.

[15]  B. Bassler,et al.  Quorum sensing in bacteria. , 2001, Annual review of microbiology.

[16]  Shouguang Jin,et al.  Growth Phase-Dependent Invasion ofPseudomonas aeruginosa and Its Survival within HeLa Cells , 2001, Infection and Immunity.

[17]  M. Surette,et al.  The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum‐sensing signal molecule , 2001, Molecular microbiology.

[18]  B. Iglewski,et al.  Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes , 1997, Journal of bacteriology.

[19]  E. Stackebrandt,et al.  Proposal for a New Hierarchic Classification System, Actinobacteria classis nov. , 1997 .

[20]  K. Tanaka,et al.  A hierarchical quorum‐sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary‐phase sigma factor RpoS , 1996, Molecular microbiology.

[21]  D. Ohman,et al.  Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family , 1995, Journal of bacteriology.

[22]  E. Greenberg,et al.  A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[23]  P. Seed,et al.  Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy , 1995, Journal of bacteriology.

[24]  P. Li,et al.  TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[25]  E. Greenberg,et al.  Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[26]  G. Caetano-Anollés,et al.  Amplifying DNA with arbitrary oligonucleotide primers. , 1993, PCR methods and applications.

[27]  M. Follettie,et al.  Gene structure and expression of the Corynebacterium flavum N13 ask-asd operon , 1993, Journal of bacteriology.

[28]  P. Murphy,et al.  Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones , 1993, Nature.

[29]  S. Lory,et al.  Characterization of the type a flagellin gene from Pseudomonas aeruginosa PAK , 1990, Journal of bacteriology.

[30]  P. Stragier,et al.  Pseudomonas aeruginosa diaminopimelate decarboxylase: evolutionary relationship with other amino acid decarboxylases. , 1988, Molecular biology and evolution.

[31]  B. Holloway,et al.  Chromosomal genetics of Pseudomonas. , 1979, Microbiological reviews.

[32]  K. Tsukada D-amino acid dehydrogenases of Pseudomonas fluorescens. , 1966, The Journal of biological chemistry.

[33]  P. Liu,et al.  The roles of various fractions of Pseudomonas aeruginosa in its pathogenesis. 3. Identity of the lethal toxins produced in vitro and in vivo. , 1966, The Journal of infectious diseases.

[34]  P. Liu,et al.  The roles of various fractions of Pseudomonas aeruginosa in its pathogenesis. II. Effects of lecithinase and protease. , 1966, The Journal of infectious diseases.

[35]  B. Bassler,et al.  Mob Psychology , 1910, The Hospital.

[36]  U. Ha,et al.  Autoinduction of a genetic locus encoding putative acyltransferase in Corynebacterium glutamicum , 2010, Biotechnology Letters.