Replacing fly ash with limestone dust in hybrid cements

[1]  S. Shen,et al.  Effect of Macro-, Micro- and Nano-Calcium Carbonate on Properties of Cementitious Composites—A Review , 2019, Materials.

[2]  K. Scrivener,et al.  Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry , 2018, Cement and Concrete Research.

[3]  Ruby Mejía de Gutiérrez,et al.  Natural volcanic pozzolans as an available raw material for alkali-activated materials in the foreseeable future: A review , 2018, Construction and Building Materials.

[4]  Wei Sun,et al.  Reducing environmental impacts and carbon emissions: Study of effects of superfine cement particles on blended cement containing high volume mineral admixtures , 2018, Journal of Cleaner Production.

[5]  Zhenguo Shi,et al.  A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures , 2018, Construction and Building Materials.

[6]  Ángel Palomo,et al.  Hydration mechanisms of hybrid cements as a function of the way of addition of chemicals , 2018, Journal of the American Ceramic Society.

[7]  A. Fernández-Jiménez,et al.  Hybrid Alkaline Cements: Bentonite-Opc Binders , 2018 .

[8]  Walid A. Al-Kutti,et al.  An overview and experimental study on hybrid binders containing date palm ash, fly ash, OPC and activator composites , 2018 .

[9]  K. Scrivener,et al.  Calcined clay limestone cements (LC3) , 2017, Cement and Concrete Research.

[10]  M. Santhanam,et al.  Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance , 2017 .

[11]  Y. Yue,et al.  Physical performances of alkali-activated Portland cement – glass – limestone blends , 2017 .

[12]  Nemkumar Banthia,et al.  Cements in the 21st Century: Challenges, Perspectives, and Opportunities. , 2017, Journal of the American Ceramic Society. American Ceramic Society.

[13]  Sanghwa Jung,et al.  Effects of the fineness of limestone powder and cement on the hydration and strength development of PLC concrete , 2017 .

[14]  Tongbo Sui,et al.  Alternative cement clinkers , 2017, Cement and Concrete Research.

[15]  J. Deventer,et al.  Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors , 2016 .

[16]  Ravindra K. Dhir,et al.  Limestone addition effects on concrete porosity , 2016 .

[17]  Ángel Palomo,et al.  Hydration of Hybrid Alkaline Cement Containing a Very Large Proportion of Fly Ash: A Descriptive Model , 2016, Materials.

[18]  I. Janotka,et al.  Fundamental properties of industrial hybrid cement: utilization in ready-mixed concretes and shrinkage-reducing applications , 2016 .

[19]  B. Lothenbach,et al.  Chemical activation of hybrid binders based on siliceous fly ash and Portland cement , 2016 .

[20]  A. Peled,et al.  Packing density modeling of blended cement with limestone having different particle sizes , 2016 .

[21]  G. Sant,et al.  Elucidating the Role of the Aluminous Source on Limestone Reactivity in Cementitious Materials , 2015 .

[22]  Karen L. Scrivener,et al.  Industrial trial to produce a low clinker, low carbon cement , 2015 .

[23]  L. Soriano,et al.  Use of high-resolution thermogravimetric analysis (HRTG) technique in spent FCC catalyst/Portland cement pastes , 2015, Journal of Thermal Analysis and Calorimetry.

[24]  Luca Bertolini,et al.  Effects of portland cement replacement with limestone on the properties of hardened concrete , 2014 .

[25]  G. Saoût,et al.  Influence of limestone and anhydrite on the hydration of Portland cements , 2014 .

[26]  Ángel Palomo,et al.  Variation in hybrid cements over time. Alkaline activation of fly ash–portland cement blends , 2013 .

[27]  Alireza Bahadori,et al.  Global strategies and potentials to curb CO2 emissions in cement industry , 2013 .

[28]  Pei-ming Wang,et al.  Calorimetric study on the influence of calcium sulfate on the hydration of Portland cement–calcium aluminate cement mixtures , 2012, Journal of Thermal Analysis and Calorimetry.

[29]  Qijun Yu,et al.  Efficient utilization of cementitious materials to produce sustainable blended cement , 2012 .

[30]  Kefei Li,et al.  Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes , 2012 .

[31]  B. Lothenbach,et al.  Supplementary cementitious materials , 2011 .

[32]  Y. Yue,et al.  Physical performances of blended cements containing calcium aluminosilicate glass powder and limestone , 2011 .

[33]  G. Saoût,et al.  Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash , 2011 .

[34]  Hacène Houari,et al.  Effect of a high calcite filler addition upon microstructural, mechanical, shrinkage and transport properties of a mortar , 2008 .

[35]  G. Saoût,et al.  Influence of limestone on the hydration of Portland cements , 2008 .

[36]  Edgardo F. Irassar,et al.  Studies on the carboaluminate formation in limestone filler-blended cements , 2001 .

[37]  S. Tsivilis,et al.  Properties and behavior of limestone cement concrete and mortar , 2000 .

[38]  H. Donza,et al.  Influence of initial curing on the properties of concrete containing limestone blended cement , 2000 .

[39]  H. Pöllmann,et al.  Hydration of C3A in the presence of Ca(OH)2, CaSO4·2H2O and CaCO3 , 1991 .

[40]  Priji. e. Moses,et al.  Hydration of Cement and its Mechanisms , 2016 .

[41]  M. Zając,et al.  Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder , 2015 .

[42]  M. Zając,et al.  The Influence of Limestone and Al2O3 Content in the Slag on the Performance of the Composite Cements , 2015 .

[43]  W. Jason Weiss,et al.  Fine limestone additions to regulate setting in high volume fly ash mixtures , 2012 .

[44]  Harald Justnes,et al.  Synergy between fly ash and limestone powder in ternary cements , 2011 .

[45]  E. F. Irassar,et al.  Strength development of ternary blended cement with limestone filler and blast-furnace slag , 2003 .