Internal entry of ribosomes and ribosomal scanning involved in hepatitis B virus P gene expression

The recent demonstration that the synthesis of duck hepatitis B virus (HBV) reverse transcriptase does not require translational frameshifting and the finding that poliovirus mRNA translation occurs in a cap-independent manner by internal binding of ribosomes in the 5' noncoding region led us to design experiments to test the hypothesis of internal entry of ribosomes on C gene mRNA for HBV P gene expression. We show that in human cells, translation can be initiated at the first AUG of the HBV P gene by entry of ribosomes in a region located upstream of the P gene. Moreover, the leaky scanning of ribosomes observed on the first AUG of the HBV P gene could be responsible for the synthesis of the two forms of reverse transcriptase described for HBV particles.

[1]  M. Perricaudet,et al.  Expression mechanism of the hepatitis B virus (HBV) C gene and biosynthesis of HBe antigen. , 1989, Virology.

[2]  E. Wimmer,et al.  Initiation of protein synthesis by internal entry of ribosomes into the 5' nontranslated region of encephalomyocarditis virus RNA in vivo , 1989, Journal of virology.

[3]  M. Feitelson,et al.  The hepatitis B virus-associated reverse transcriptase is encoded by the viral pol gene , 1989, Journal of virology.

[4]  D. Kolakofsky,et al.  Scanning independent ribosomal initiation of the Sendai virus Y proteins in vitro and in vivo. , 1989, The EMBO journal.

[5]  A. Makhov,et al.  Prediction of terminal protein and ribonuclease H domains in the gene P product of hepadnaviruses , 1989, FEBS letters.

[6]  H. Varmus,et al.  Biosynthesis of the reverse transcriptase of hepatitis B viruses involves de novo translational initiation not ribosomal frameshifting , 1989, Nature.

[7]  H. Schlicht,et al.  Synthesis and encapsidation of duck hepatitis B virus reverse transcriptase do not require formation of core-polymerase fusion proteins , 1989, Cell.

[8]  R. Bartenschlager,et al.  The amino‐terminal domain of the hepadnaviral P‐gene encodes the terminal protein (genome‐linked protein) believed to prime reverse transcription. , 1988, The EMBO journal.

[9]  D. Kolakofsky,et al.  Scanning independent ribosomal initiation of the Sendai virus X protein. , 1988, The EMBO journal.

[10]  N. Sonenberg,et al.  Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA , 1988, Nature.

[11]  T. Hohn,et al.  A viable mutation in cauliflower mosaic virus, a retroviruslike plant virus, separates its capsid protein and polymerase genes , 1988, Journal of virology.

[12]  O. Laub,et al.  Two proteins with reverse transcriptase activities associated with hepatitis B virus-like particles , 1988, Journal of virology.

[13]  C. Thomas Caskey,et al.  Translational frameshifting: Where will it stop? , 1987, Cell.

[14]  R. Sprengel,et al.  Replication strategy of human hepatitis B virus , 1987, Journal of virology.

[15]  M. Kozak Bifunctional messenger RNAs in eukaryotes , 1986, Cell.

[16]  H. Will,et al.  Putative reverse transcriptase intermediates of human hepatitis B virus in primary liver carcinomas. , 1986, Science.

[17]  S. Goff,et al.  Expression of enzymatically active reverse transcriptase in Escherichia coli. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[18]  H. Varmus,et al.  Mapping the major transcripts of ground squirrel hepatitis virus: the presumptive template for reverse transcriptase is terminally redundant , 1985, Cell.

[19]  M. Buendia,et al.  Transcription of woodchuck hepatitis virus in the chronically infected liver. , 1985, The EMBO journal.

[20]  H. Will,et al.  Transcripts and the putative RNA pregenome of duck hepatitis B virus: Implications for reverse transcription , 1985, Cell.

[21]  M. Smith,et al.  Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. , 1984, DNA.

[22]  H. Will,et al.  Hepatitis B virus transcription in the infected liver. , 1984, The EMBO journal.

[23]  J. Taylor,et al.  Protein covalently bound to minus-strand DNA intermediates of duck hepatitis B virus , 1983, Journal of virology.

[24]  J. Summers,et al.  Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate , 1982, Cell.

[25]  R. Lerner,et al.  Nucleotide sequence of Moloney murine leukaemia virus , 1981, Nature.

[26]  W. Robinson,et al.  Hepatitis B virus contains protein attached to the 5′ terminus of its complete DNA strand , 1980, Cell.

[27]  F. Galibert,et al.  Nucleotide sequence of the hepatitis B virus genome (subtype ayw) cloned in E. coli , 1979, Nature.

[28]  F. Graham,et al.  Host-range mutants of adenovirus type 5 defective for growth in HeLa cells. , 1977, Virology.

[29]  A. van der Eb,et al.  A new technique for the assay of infectivity of human adenovirus 5 DNA. , 1973, Virology.

[30]  R. Sprengel,et al.  Amino acid sequence similarity between retroviral and E. coli RNase H and hepadnaviral gene products. , 1988, AIDS research and human retroviruses.