Parametric inference for mixed models defined by stochastic differential equations

Non-linear mixed models defined by stochastic differential equations (SDEs) are consid- ered: the parameters of the diffusion process are random variables and vary among the individuals. A maximum likelihood estimation method based on the Stochastic Approximation EM algorithm, is proposed. This estimation method uses the Euler-Maruyama approximation of the diffusion, achieved using latent auxiliary data introduced to complete the diffusion process between each pair of measure- ment instants. A tuned hybrid Gibbs algorithm based on conditional Brownian bridges simulations of the unobserved process paths is included in this algorithm. The convergence is proved and the error induced on the likelihood by the Euler-Maruyama approximation is bounded as a function of the step size of the approximation. Results of a pharmacokinetic simulation study illustrate the accuracy of this estimation method. The analysis of the Theophyllin real dataset illustrates the relevance of the SDE approach relative to the deterministic approach.

[1]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[2]  M. Sørensen,et al.  Martingale estimation functions for discretely observed diffusion processes , 1995 .

[3]  Andrea De Gaetano,et al.  MIXED EFFECTS IN STOCHASTIC DIFFERENTIAL EQUATION MODELS , 2005 .

[4]  R. Douc,et al.  Asymptotics of the maximum likelihood estimator for general hidden Markov models , 2001 .

[5]  Denis Talay,et al.  The law of the Euler scheme for stochastic differential equations , 1996, Monte Carlo Methods Appl..

[6]  Jean Jacod,et al.  Diffusions with measurement errors. II. Optimal estimators , 2001 .

[7]  P. Fearnhead,et al.  Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion) , 2006 .

[8]  Walter R. Gilks,et al.  MCMC for nonlinear hierarchical models , 1995 .

[9]  H. Milbrodt GLOBAL ASYMPTOTIC NORMALITY , 1983 .

[10]  D. Bates,et al.  Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model , 1995 .

[11]  Fred C. Schweppe,et al.  Evaluation of likelihood functions for Gaussian signals , 1965, IEEE Trans. Inf. Theory.

[12]  Patrick Sillard,et al.  PROBABILITÉS ET STATISTIQUES , 2000 .

[13]  S. Kusuoka,et al.  Applications of the Malliavin calculus, Part III , 1984 .

[14]  T. Pitcher,et al.  Parameter estimation for stochastic processes , 1964 .

[15]  Hermann Singer,et al.  CONTINUOUS-TIME DYNAMICAL SYSTEMS WITH SAMPLED DATA, ERRORS OF MEASUREMENT AND UNOBSERVED COMPONENTS , 1993 .

[16]  H. Sørensen Parametric Inference for Diffusion Processes Observed at Discrete Points in Time: a Survey , 2004 .

[17]  Sophie Donnet,et al.  Estimation of parameters in incomplete data models defined by dynamical systems , 2007 .

[18]  Marc Lavielle,et al.  Maximum likelihood estimation in nonlinear mixed effects models , 2005, Comput. Stat. Data Anal..

[19]  Jean Jacod,et al.  Diffusions with measurement errors. I. Local Asymptotic Normality , 2001 .

[20]  L B Sheiner,et al.  Estimating population kinetics. , 1982, Critical reviews in biomedical engineering.

[21]  Henrik Madsen,et al.  Stochastic Differential Equations in NONMEM®: Implementation, Application, and Comparison with Ordinary Differential Equations , 2005, Pharmaceutical Research.

[22]  N. Shephard,et al.  Likelihood INference for Discretely Observed Non-linear Diffusions , 2001 .

[23]  R. Krishna Applications of Pharmacokinetic Principles in Drug Development , 2004, Springer US.

[24]  C. Andrieu,et al.  On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.

[25]  D. Florens-zmirou,et al.  Estimation of the coefficients of a diffusion from discrete observations , 1986 .

[26]  M. Sørensen,et al.  Prediction-based estimating functions , 2000 .

[27]  D. Bates,et al.  Nonlinear mixed effects models for repeated measures data. , 1990, Biometrics.

[28]  E. Kuhn,et al.  Coupling a stochastic approximation version of EM with an MCMC procedure , 2004 .

[29]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[30]  Martin A. Tanner,et al.  Calculating the content and boundary of the highest posterior density region via data augmentation , 1990 .

[31]  É. Moulines,et al.  Convergence of a stochastic approximation version of the EM algorithm , 1999 .

[32]  Russell D. Wolfinger,et al.  Laplace's approximation for nonlinear mixed models. , 1993 .

[33]  Yacine Aït-Sahalia Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed‐form Approximation Approach , 2002 .

[34]  D. Stroock,et al.  Applications of the Malliavin calculus. II , 1985 .

[35]  G. Roberts,et al.  On inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm , 2001 .

[36]  Bjørn Eraker MCMC Analysis of Diffusion Models With Application to Finance , 2001 .

[37]  A. Pedersen A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations , 1995 .

[38]  H. Madsen,et al.  Non-Linear Mixed-Effects Models with Stochastic Differential Equations: Implementation of an Estimation Algorithm , 2005, Journal of Pharmacokinetics and Pharmacodynamics.

[39]  D. Talay,et al.  The law of the Euler scheme for stochastic differential equations , 1996 .

[40]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[41]  Prakasa Rao Statistical inference for diffusion type processes , 1999 .

[42]  M. Alliaume,et al.  Probabilites et Statistiques. , 1932 .

[43]  Jean Jacod,et al.  On the estimation of the diffusion coefficient for multi-dimensional diffusion processes , 1993 .

[44]  A. Dembo,et al.  Parameter estimation of partially observed continuous time stochastic processes via the EM algorithm , 1992 .

[45]  G. Roberts,et al.  Exact simulation of diffusions , 2005, math/0602523.

[46]  Mathieu Kessler Estimation of an Ergodic Diffusion from Discrete Observations , 1997 .