Recent Advances on Determining the Number of Real Roots of Parametric Polynomials
暂无分享,去创建一个
[1] W. Habicht. Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens , 1948 .
[2] Bruno Buchberger,et al. Computer algebra symbolic and algebraic computation , 1982, SIGS.
[3] R. Loos. Generalized Polynomial Remainder Sequences , 1983 .
[4] Scott F. Smith,et al. Towards mechanical solution of the Kahan Ellipse Problem 1 , 1983, EUROCAL.
[5] Maurice Mignotte,et al. On Mechanical Quantifier Elimination for Elementary Algebra and Geometry , 1988, J. Symb. Comput..
[6] Dennis S. Arnon,et al. Geometric Reasoning with Logic and Algebra , 1988, Artif. Intell..
[7] Daniel Lazard,et al. Quantifier Elimination: Optimal Solution for Two Classical Examples , 1988, J. Symb. Comput..
[8] Bruce W. Char,et al. Maple V Library Reference Manual , 1992, Springer New York.
[9] George E. Collins,et al. Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..
[10] David W. Lewis,et al. Matrix theory , 1991 .
[11] Volker Weispfenning,et al. Quantifier elimination for real algebra—the cubic case , 1994, ISSAC '94.
[12] Lu Yang,et al. A complete discrimination system for polynomials , 1996 .
[13] F. Broglia. Lectures in real geometry , 1996 .
[14] Lu Yang,et al. Explicit Criterion to Determine the Number of Positive Roots of a Polynomial 1) , 1997 .
[15] B. F. Caviness,et al. Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.
[16] L. González-Vega. A Combinatorial Algorithm Solving Some Quantifier Elimination Problems , 1998 .
[17] Marie-Françoise Roy,et al. Sturm—Habicht Sequences, Determinants and Real Roots of Univariate Polynomials , 1998 .
[18] S. Liang,et al. A complete discrimination system for polynomials with complex coefficients and its automatic generation , 1999 .