From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey

We summarize the first results from the Gould Belt survey, obtained toward the Aquila Rift and Polaris Flare regions during the 'science demonstration phase' of Herschel. Our 70-500 micron images taken in parallel mode with the SPIRE and PACS cameras reveal a wealth of filamentary structure, as well as numerous dense cores embedded in the filaments. Between ~ 350 and 500 prestellar cores and ~ 45-60 Class 0 protostars can be identified in the Aquila field, while ~ unbound starless cores and no protostars are observed in the Polaris field. The prestellar core mass function (CMF) derived for the Aquila region bears a strong resemblance to the stellar initial mass function (IMF), already confirming the close connection between the CMF and the IMF with much better statistics than earlier studies. Comparing and contrasting our Herschel results in Aquila and Polaris, we propose an observationally-driven scenario for core formation according to which complex networks of long, thin filaments form first within molecular clouds, and then the densest filaments fragment into a number of prestellar cores via gravitational instability.

H. Roussel | D. Ward-Thompson | P. Ade | L. Testi | T. Prusti | S. Pezzuto | C. Waelkens | S. Bontemps | Th. Henning | A. Abergel | A. Omont | P. Didelon | H. Aussel | V. Minier | M. Sauvage | N. Schneider | G. Olofsson | P. Hargrave | R. Launhardt | A. Zavagno | R. Vavrek | S. Molinari | N. Peretto | M. Benedettini | M. Sauvage | O. Krause | P. Ade | N. Peretto | S. Bontemps | F. Motte | N. Schneider | S. Molinari | P. Cox | A. Omont | L. Testi | A. Woodcraft | H. Aussel | A. Abergel | J. Blommaert | T. Prusti | T. Henning | A. Sicilia-Aguilar | B. Merín | C. Waelkens | J. Bernard | P. Martin | A. Zavagno | J. Francesco | G. Olofsson | G. White | R. Launhardt | H. Roussel | C. Wilson | M. Griffin | L. Spinoglio | D. Ward-Thompson | P. Hargrave | J. Kirk | P. Andr'e | J. Baluteau | M. Huang | S. Leeks | P. Saraceno | B. Sibthorpe | V. Minier | D. Russeil | A. Maury | S. Pezzuto | J. Pennec | P. Royer | Jin-zeng Li | M. Benedettini | P. Didelon | M. Hennemann | V. Konyves | D. Arzoumanian | R. Vavrek | J. Li | Maohai Huang | B. Mer'in | P. Saraceno | A. Maury | L. Spinoglio | P. Martin | J. Di Francesco | B. Sibthorpe | A. Men'shchikov | A. Maury | J.-Ph. Bernard | C. D. Wilson | F. Motte | A. Woodcraft | O. Krause | D. Arzoumanian | P. Royer | M. Griffin | J.-P. Baluteau | G. White | D. Russeil | M. Huang | Ph. Andr'e | V. Konyves | J. Le Pennec | M. Hennemann | P. Cox | S. Leeks | J. Kirk | J.A.D.L. Blommaert | A. Sicilia-Aguilar | B. Mer'in | J. Z. Li | M. Attard | A. Men'shchikov | L. Cambr'esy | A. Di Giorgio | V. Könyves | M. J. Griffin | M. Attard | L. Cambr'esy | S. Bontemps | C. Wilson | J. D. Francesco | L. Cambrésy | A. D. Giorgio | P. Royer | M. Huang | A. Men’shchikov | Christine D. Wilson | L. Spinoglio | A. M. Giorgio | M. Griffin | T. Henning | P. Ade | C. Wilson | O. Krause | G. J. White | B. Merín | M. Benedettini | P. André | A. Abergel | J.-Ph. Bernard | P. Cox | Maohai Huang | J. Pennec | P. Martin | A. Maury | G. Olofsson | J. Bernard | B. Merin

[1]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[2]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[3]  M. Sauvage,et al.  Filamentary structures and compact objects in the Aquila and Polaris clouds observed by Herschel , 2010, 1005.3115.

[4]  M. Sauvage,et al.  The Aquila prestellar core population revealed by Herschel , 2010, 1005.2981.

[5]  R. Emery,et al.  Herschel -SPIRE observations of the Polaris flare: Structure of the diffuse interstellar medium at the sub-parsec scale , 2010, 1005.2746.

[6]  M. Sauvage,et al.  A Herschel study of the properties of starless cores in the Polaris Flare dark cloud region using PACS and SPIRE , 2010, 1005.2519.

[7]  M. Sauvage,et al.  Special Feature the Herschel First Look at Protostars in the Aquila Rift , 2022 .

[8]  M. Halpern,et al.  BLAST05: POWER SPECTRA OF BRIGHT GALACTIC CIRRUS AT SUBMILLIMETER WAVELENGTHS , 2009, 0910.1095.

[9]  P. Myers FILAMENTARY STRUCTURE OF STAR-FORMING COMPLEXES , 2009, 0906.2005.

[10]  G. Chabrier Structure formation in astrophysics , 2009 .

[11]  Gilles Chabrier,et al.  Analytical Theory for the Initial Mass Function: CO Clumps and Prestellar Cores , 2008, 0805.0691.

[12]  L. Allen,et al.  The Spitzer Gould Belt Survey of Large Nearby Interstellar Clouds: Discovery of a Dense Embedded Cluster in the Serpens-Aquila Rift , 2007, 0712.3303.

[13]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[14]  M. Dunham,et al.  Identifying the Low-Luminosity Population of Embedded Protostars in the c2d Observations of Clouds and Cores , 2007, 0806.1754.

[15]  M. Lombardi,et al.  The mass function of dense molecular cores and the origin of the IMF , 2006, astro-ph/0612126.

[16]  D. Ward-Thompson,et al.  A SCUBA survey of Orion -the low-mass end of the core mass function , 2006, astro-ph/0611164.

[17]  Michael D. Smith,et al.  An unbiased search for the signatures of protostars in the ρ Ophiuchi molecular cloud , II. Millimetre continuum observations , 2005, astro-ph/0511093.

[18]  P. Mauskopf,et al.  Bolocam Survey for 1.1 mm Dust Continuum Emission in the c2d Legacy Clouds. I. Perseus , 2005, astro-ph/0602259.

[19]  Alyson G. Wilson The dusty and molecular universe: a prelude to Herschel and ALMA , 2005 .

[20]  D. Johnstone,et al.  An Extinction Threshold for Protostellar Cores in Ophiuchus , 2004, astro-ph/0406640.

[21]  E. Candès,et al.  Astronomical image representation by the curvelet transform , 2003, Astronomy & Astrophysics.

[22]  Volker Bromm,et al.  The formation of a star cluster: predicting the properties of stars and brown dwarfs , 2002, astro-ph/0212380.

[23]  F. Bertoldi,et al.  Gravitationally bound cores in a molecular cirrus cloud , 2002 .

[24]  P. Andre',et al.  A SCUBA survey of the NGC 2068/2071 protoclusters , 2001 .

[25]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[26]  Frédérique Motte,et al.  The circumstellar environment of low-mass protostars: A millimeter continuum mapping survey ? , 2001 .

[27]  D. Johnstone,et al.  Large-Area Mapping at 850 Microns. II. Analysis of the Clump Distribution in the ρ Ophiuchi Molecular Cloud , 2000 .

[28]  P. Padoan,et al.  The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.

[29]  J. Fiege,et al.  Helical fields and filamentary molecular clouds — I , 1999, astro-ph/9901096.

[30]  A. Kawamura,et al.  A C18O Survey of Dense Cloud Cores in Taurus: Star Formation , 1998 .

[31]  S. Miyama,et al.  A Production Mechanism for Clusters of Dense Cores , 1997 .

[32]  B. Elmegreen A Fractal Origin for the Mass Spectrum of Interstellar Clouds. II. Cloud Models and Power-Law Slopes , 1996, astro-ph/0112528.

[33]  S. Miyama,et al.  Self-similar Solutions and the Stability of Collapsing Isothermal Filaments , 1992 .

[34]  R. Larson Cloud fragmentation and stellar masses , 1985 .

[35]  N. Storer,et al.  Physics or Astronomy , 1971 .

[36]  J. Ostriker The Equilibrium of Polytropic and Isothermal Cylinders. , 1964 .