Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing

[1]  Abdullahi Umar Ibrahim,et al.  Genome Engineering Using the CRISPR Cas9 System , 2019 .

[2]  A. Wagers,et al.  Therapeutic Gene Editing in Muscles and Muscle Stem Cells , 2017 .

[3]  Michael Q. Zhang,et al.  In Situ Capture of Chromatin Interactions by Biotinylated dCas9 , 2017, Cell.

[4]  Jonathan S. Weissman,et al.  Design and specificity of long ssDNA donors for CRISPR-based knock-in , 2017, bioRxiv.

[5]  Jianhui Gong,et al.  Correction of a pathogenic gene mutation in human embryos , 2017, Nature.

[6]  J. Corn,et al.  CRISPR-Cas9 genome editing in human cells works via the Fanconi Anemia pathway , 2017, bioRxiv.

[7]  Jacob E Corn,et al.  Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering , 2017, eLife.

[8]  J. Ji,et al.  Efficient generation of mice carrying homozygous double-floxp alleles using the Cas9-Avidin/Biotin-donor DNA system , 2017, Cell Research.

[9]  Jennifer A. Doudna,et al.  Targeted gene knock-in by homology-directed genome editing using Cas9 ribonucleoprotein and AAV donor delivery , 2017, Nucleic acids research.

[10]  Mithat Gönen,et al.  Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection , 2017, Nature.

[11]  H. Wandall,et al.  Genome editing using FACS enrichment of nuclease-expressing cells and indel detection by amplicon analysis , 2017, Nature Protocols.

[12]  Pachai Natarajan,et al.  CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease , 2017, Science Translational Medicine.

[13]  Namritha Ravinder,et al.  Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. , 2017, Journal of biotechnology.

[14]  E. Papapetrou Patient-derived induced pluripotent stem cells in cancer research and precision oncology , 2016, Nature Medicine.

[15]  Sruthi Mantri,et al.  CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells , 2016, Nature.

[16]  Margaret A Goodell,et al.  Highly Efficient Genome Editing of Murine and Human Hematopoietic Progenitor Cells by CRISPR/Cas9. , 2016, Cell reports.

[17]  Dana Carroll,et al.  Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells , 2016, Science Translational Medicine.

[18]  J. Keith Joung,et al.  731. High-Fidelity CRISPR-Cas9 Nucleases with No Detectable Genome-Wide Off-Target Effects , 2016 .

[19]  Marc Tessier-Lavigne,et al.  Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9 , 2016, Nature.

[20]  Shaojie Zhang,et al.  Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow , 2016, Nature Biotechnology.

[21]  Yonatan Stelzer,et al.  Parkinson-associated risk variant in enhancer element produces subtle effect on target gene expression , 2016, Nature.

[22]  B. Conklin,et al.  Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing , 2016, Scientific Reports.

[23]  Jean-Paul Concordet,et al.  Improved Genome Editing Efficiency and Flexibility Using Modified Oligonucleotides with TALEN and CRISPR-Cas9 Nucleases. , 2016, Cell reports.

[24]  Y. E. Chen,et al.  RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency , 2016, Nature Communications.

[25]  Jacob E Corn,et al.  Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA , 2016, Nature Biotechnology.

[26]  Krishanu Saha,et al.  High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells , 2016, Stem cell reports.

[27]  J. Joung,et al.  High-fidelity CRISPR-Cas9 variants with undetectable genome-wide off-targets , 2015, Nature.

[28]  Ricardo Villamarín-Salomón,et al.  ClinVar: public archive of interpretations of clinically relevant variants , 2015, Nucleic Acids Res..

[29]  J. Rinn,et al.  Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display , 2015, Nature Methods.

[30]  James A. Gagnon,et al.  Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus. , 2015, Cell reports.

[31]  Alexander Deiters,et al.  Optical Control of CRISPR/Cas9 Gene Editing. , 2015, Journal of the American Chemical Society.

[32]  David R. Liu,et al.  Small Molecule-Triggered Cas9 Protein with Improved Genome-Editing Specificity , 2015, Nature chemical biology.

[33]  Hidde L Ploegh,et al.  Inhibition of non-homologous end joining increases the efficiency of CRISPR/Cas9-mediated precise [TM: inserted] genome editing , 2015, Nature Biotechnology.

[34]  Steven Lin,et al.  Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery , 2014, eLife.

[35]  Alexandro E. Trevino,et al.  Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex , 2014, Nature.

[36]  James A Thomson,et al.  Pompe Disease Results in a Golgi-based Glycosylation Deficit in Human Induced Pluripotent Stem Cell-derived Cardiomyocytes* , 2014, The Journal of Biological Chemistry.

[37]  J. Keith Joung,et al.  Efficient Delivery of Genome-Editing Proteins In Vitro and In Vivo , 2014, Nature Biotechnology.

[38]  B. van Steensel,et al.  Easy quantitative assessment of genome editing by sequence trace decomposition , 2014, Nucleic acids research.

[39]  Gang Wang,et al.  Optimization of Genome Engineering Approaches with the CRISPR/Cas9 System , 2014, PloS one.

[40]  E. Mcwhinnie,et al.  DNA sequencing and CRISPR-Cas9 gene editing for target validation in mammalian cells. , 2014, Nature chemical biology.

[41]  Sangsu Bae,et al.  Microhomology-based choice of Cas9 nuclease target sites , 2014, Nature Methods.

[42]  Daesik Kim,et al.  Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins , 2014, Genome research.

[43]  Eric P. Bennett,et al.  High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs , 2014, Nucleic acids research.

[44]  Hao Yin,et al.  Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype , 2014, Nature Biotechnology.

[45]  Feng Zhang,et al.  Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA , 2014, Cell.

[46]  G. Stoecklin,et al.  An optimized streptavidin-binding RNA aptamer for purification of ribonucleoprotein complexes identifies novel ARE-binding proteins , 2013, Nucleic acids research.

[47]  David R. Liu,et al.  High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity , 2013, Nature Biotechnology.

[48]  George Church,et al.  Optimization of scarless human stem cell genome editing , 2013, Nucleic acids research.

[49]  Samir Mitragotri,et al.  Multifunctional nanoparticles for drug delivery and molecular imaging. , 2013, Annual review of biomedical engineering.

[50]  M. Robson,et al.  Impairment of BRCA1-Related DNA Double-Strand Break Repair Leads to Ovarian Aging in Mice and Humans , 2013, Science Translational Medicine.

[51]  Zhizhi Wang,et al.  Streptavidin and its biotin complex at atomic resolution. , 2011, Acta crystallographica. Section D, Biological crystallography.

[52]  Hojun Li,et al.  In vivo genome editing restores hemostasis in a mouse model of hemophilia , 2011, Nature.

[53]  Giovanni Paganelli,et al.  Therapeutic use of avidin is not hampered by antiavidin antibodies in humans. , 2010, Cancer biotherapy & radiopharmaceuticals.

[54]  M. Kay,et al.  Adeno‐associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo , 2010, Hepatology.

[55]  Anne E Carpenter,et al.  CellProfiler: image analysis software for identifying and quantifying cell phenotypes , 2006, Genome Biology.

[56]  C. Sevier,et al.  Formation and transfer of disulphide bonds in living cells , 2002, Nature Reviews Molecular Cell Biology.

[57]  R. Jaenisch,et al.  In Vitro Modeling of Complex Neurological Diseases , 2017 .