The TREK K2P channels and their role in general anaesthesia and neuroprotection.

[1]  M. Lazdunski,et al.  TREK‐1, a K+ channel involved in neuroprotection and general anesthesia , 2004, The EMBO journal.

[2]  S. Sikdar,et al.  Trichloroethanol enhances the activity of recombinant human TREK-1 and TRAAK channels , 2004, Neuropharmacology.

[3]  W. R. Lieb,et al.  Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. , 2004, Molecular pharmacology.

[4]  Darrell R. Abernethy,et al.  International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels , 2003, Pharmacological Reviews.

[5]  Donghee Kim Fatty acid-sensitive two-pore domain K+ channels. , 2003, Trends in pharmacological sciences.

[6]  M. Lazdunski,et al.  Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K+ channels , 2003, The EMBO journal.

[7]  E. Eger,et al.  The Use of the Potassium Channel Activator Riluzole to Test Whether Potassium Channels Mediate the Capacity of Isoflurane to Produce Immobility , 2003, Anesthesia and analgesia.

[8]  M. Lazdunski,et al.  Linolenic acid prevents neuronal cell death and paraplegia after transient spinal cord ischemia in rats. , 2003, Journal of vascular surgery.

[9]  M. Lazdunski,et al.  K+-dependent Cerebellar Granule Neuron Apoptosis , 2003, Journal of Biological Chemistry.

[10]  O. Pongs,et al.  Inhibition of Human TREK-1 Channels by Bupivacaine , 2003, Anesthesia and analgesia.

[11]  C. Yost Update on tandem pore (2P) domain K+ channels. , 2003, Current Drug Targets.

[12]  E. Eger,et al.  Mutation of KCNK5 or Kir3.2 Potassium Channels in Mice Does Not Change Minimum Alveolar Anesthetic Concentration , 2003, Anesthesia and analgesia.

[13]  C. Peers,et al.  Acute hypoxia occludes hTREK-1 modulation: re-evaluation of the potential role of tandem P domain K+ channels in central neuroprotection. , 2003, The Journal of physiology.

[14]  D. Bayliss,et al.  Two-Pore-Domain (Kcnk) Potassium Channels: Dynamic Roles in Neuronal Function , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[15]  B. Antkowiak,et al.  General anesthetic actions in vivo strongly attenuated by a point mutation in the GABAA receptor β3 subunit , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[16]  S. Danthi,et al.  An ACTH- and ATP-regulated Background K+ Channel in Adrenocortical Cells Is TREK-1* , 2002, The Journal of Biological Chemistry.

[17]  M. Lazdunski,et al.  A Potent Protective Role of Lysophospholipids against Global Cerebral Ischemia and Glutamate Excitotoxicity in Neuronal Cultures , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[18]  M. Lazdunski,et al.  An intracellular proton sensor commands lipid‐ and mechano‐gating of the K+ channel TREK‐1 , 2002, The EMBO journal.

[19]  D. Bayliss,et al.  Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) Potassium Channels , 2002, The Journal of Biological Chemistry.

[20]  M. Lazdunski,et al.  Molecular basis of the voltage-dependent gating of TREK-1, a mechano-sensitive K(+) channel. , 2002, Biochemical and biophysical research communications.

[21]  G. Czirják,et al.  Formation of Functional Heterodimers between the TASK-1 and TASK-3 Two-pore Domain Potassium Channel Subunits* , 2002, The Journal of Biological Chemistry.

[22]  M. Lazdunski,et al.  Polyunsaturated fatty acids induce ischemic and epileptic tolerance , 2002, Neuroscience.

[23]  K. Sanders,et al.  TREK-1 Regulation by Nitric Oxide and cGMP-dependent Protein Kinase , 2001, The Journal of Biological Chemistry.

[24]  E. Honoré,et al.  Anesthetic-sensitive 2P Domain K+ Channels , 2001, Anesthesiology.

[25]  Donghee Kim,et al.  Localization of TREK-2 K+ channel domains that regulate channel kinetics and sensitivity to pressure, fatty acids and pHi , 2001, Pflügers Archiv.

[26]  A. Patel,et al.  Lipid and mechano-gated 2P domain K(+) channels. , 2001, Current opinion in cell biology.

[27]  E. Honoré,et al.  Properties and modulation of mammalian 2P domain K+ channels , 2001, Trends in Neurosciences.

[28]  D. Bockenhauer,et al.  KCNK2: reversible conversion of a hippocampal potassium leak into a voltage-dependent channel , 2001, Nature Neuroscience.

[29]  G. Hervieu,et al.  Distribution and expression of TREK-1, a two-pore-domain potassium channel, in the adult rat CNS , 2001, Neuroscience.

[30]  A. Randall,et al.  Functional characterisation of human TASK-3, an acid-sensitive two-pore domain potassium channel , 2001, Neuropharmacology.

[31]  Detlef Bockenhauer,et al.  Potassium leak channels and the KCNK family of two-p-domain subunits , 2001, Nature Reviews Neuroscience.

[32]  P. Murdock,et al.  The neuroprotective agent sipatrigine (BW619C89) potently inhibits the human tandem pore-domain K+ channels TREK-1 and TRAAK , 2001, Brain Research.

[33]  Donghee Kim,et al.  Synergistic interaction and the role of C-terminus in the activation of TRAAK K+ channels by pressure, free fatty acids and alkali , 2001, Pflügers Archiv.

[34]  M. Pangalos,et al.  Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. , 2001, Brain research. Molecular brain research.

[35]  M. Lazdunski,et al.  Molecular and functional properties of two-pore-domain potassium channels. , 2000, American journal of physiology. Renal physiology.

[36]  M. Lazdunski,et al.  Human TREK2, a 2P Domain Mechano-sensitive K+Channel with Multiple Regulations by Polyunsaturated Fatty Acids, Lysophospholipids, and Gs, Gi, and Gq Protein-coupled Receptors* , 2000, The Journal of Biological Chemistry.

[37]  D. Bayliss,et al.  The TASK-1 Two-Pore Domain K+ Channel Is a Molecular Substrate for Neuronal Effects of Inhalation Anesthetics , 2000, The Journal of Neuroscience.

[38]  A. Gray,et al.  Volatile Anesthetics Activate the Human Tandem Pore Domain Baseline K+ Channel KCNK5 , 2000, Anesthesiology.

[39]  M. Lazdunski,et al.  TREK‐1 is a heat‐activated background K+ channel , 2000, The EMBO journal.

[40]  A. Patel,et al.  The neuroprotective agent riluzole activates the two P domain K(+) channels TREK-1 and TRAAK. , 2000, Molecular pharmacology.

[41]  M. Lazdunski,et al.  Polyunsaturated fatty acids are potent neuroprotectors , 2000, The EMBO journal.

[42]  M. Lazdunski,et al.  Lysophospholipids Open the Two-pore Domain Mechano-gated K+ Channels TREK-1 and TRAAK* , 2000, The Journal of Biological Chemistry.

[43]  D Belelli,et al.  General anaesthetic action at transmitter-gated inhibitory amino acid receptors. , 1999, Trends in pharmacological sciences.

[44]  A. Patel,et al.  Mechano- or Acid Stimulation, Two Interactive Modes of Activation of the TREK-1 Potassium Channel* , 1999, The Journal of Biological Chemistry.

[45]  M. Lazdunski,et al.  TRAAK Is a Mammalian Neuronal Mechano-gated K+Channel* , 1999, The Journal of Biological Chemistry.

[46]  R. Dickinson,et al.  How does xenon produce anaesthesia? , 1998, Nature.

[47]  M. Lazdunski,et al.  A mammalian two pore domain mechano‐gated S‐like K+ channel , 1998, The EMBO journal.

[48]  M. Lazdunski,et al.  A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids , 1998, The EMBO journal.

[49]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[50]  J. Olney,et al.  Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin , 1998, Nature Medicine.

[51]  A. Gray,et al.  TOK1 Is a Volatile Anesthetic Stimulated K+ Channel , 1998, Anesthesiology.

[52]  P. Whiting,et al.  The interaction of the general anesthetic etomidate with the gamma-aminobutyric acid type A receptor is influenced by a single amino acid. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[53]  R. Harris,et al.  Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors , 1997, Nature.

[54]  M. Lazdunski,et al.  Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. , 1996, The EMBO journal.

[55]  E. Mayeri,et al.  Volatile General Anesthetics Produce Hyperpolarization of Aplysia Neurons by Activation of a Discrete Population of Baseline Potassium Channels , 1996, Anesthesiology.

[56]  W. R. Lieb,et al.  Temperature Dependence of the Potency of Volatile General Anesthetics: Implications for In Vitro Experiments , 1996, Anesthesiology.

[57]  R. Harris,et al.  Actions of anesthetics on ligand‐gated ion channels: role of receptor subunit composition , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[58]  W. R. Lieb,et al.  Molecular and cellular mechanisms of general anaesthesia , 1994, Nature.

[59]  W. R. Lieb,et al.  Selective actions of volatile general anaesthetics at molecular and cellular levels. , 1993, British journal of anaesthesia.

[60]  J. Glowinski,et al.  Anesthetic properties of riluzole (54274 RP), a new inhibitor of glutamate neurotransmission. , 1992, Anesthesiology.

[61]  W. R. Lieb,et al.  Volatile general anaesthetics activate a novel neuronal K+ current , 1988, Nature.

[62]  R. Nicoll,et al.  General anesthetics hyperpolarize neurons in the vertebrate central nervous system. , 1982, Science.

[63]  E. Eger,et al.  The Minimum Alveolar Concentration of Nitrous Oxide in Man , 1982, Anesthesia and analgesia.

[64]  H. Lester,et al.  Compendium of voltage - gated ion channels: potassium channels , 2003 .